B Programming

SL0s
¢ Define computer program
ﬁ ¢ Describe the importance of syntax in any programming language

21 INTRODUCTION

A computer program is a set of instructions that is understood by a
computer to perform tasks. A person who writes computer programs is
known as a programmer. Computer processes instruction in binary language.

Therefore, programs are written in programming languages. Programming | =
languages have a specific set of words called syntax to create those | =

instructions. Specialized programs such as compiler are used to convert set of | ;" :
syntaxes into set of machine-readable instructions. It requires an interface to | j

convert commands from a human user. A programmer can make mistakes in | 5 :
i' *-i
I'. 5

syntax while writing a program or instructions. Other specialized programs,
known as Integrated Development Environments (IDEs), help programmers
write programs in various languages. C++ is one of the most common and |
powerful general purpose programming language. All programming =~
languages have certain concepts about rules of syntaxes, reserved words and o
data types.

211 Computer Program

A computer program is a collection
of instructions that can be executed by a
computer to perform a specific task. It is
very difficult to write in the ones and
zeroes of machine code, which is what the
computer can understand, so computer
programmers use specialized languages to
communicate with computers to perform
a set of specific tasks using languages like C++, Java or Python. Once it is
written, the programmer uses a compiler to translate it into a language that
the computer can understand.

FINERNRImERRRY

.
{18
iy . T

Syntax in Programming Language:
Syntax tells the computer how
to read a set of code. It is essentially a /4 bind the socket 1%

: ketfd, (strs
set of keywords and characters that a it (pind{soC I;:H-I 18 oot

computer can read, interpret, and EHM["EHREF-:
convert into tasks needed. Text-based
computer languages are based on

- Unis
sequences of characters, while visual j fRinding ol

programming languages like Visual Basic are based on the layout and

Example:
‘ cout << "Hello World"; ‘

In C++, this syntax displays the message "Hello World" on the screen.
| Syntax plays an important role in the execution of programs in text-based
' programming languages and can even cause syntax errors if a programmer
tries to run a program without using proper syntax. It is very common for
new programmers to make syntax-based mistakes. Different programming
languages use different types of syntax.

s ¢ Classify different programming languages into High, middle and low-level
iEl languages on the basis of their characteristics
123

2.1.2 Classification of Programming Languages

Thousands of programming
languages have been developed till
now, but each language has its
specific purpose. These languages
vary in how they can communicate
with the computer’s hardware. Some
programming languages can directly
communicate with hardware while
others have less or no access to that

|
|
|
|
|
|
4 connections between symbols (which may be textual or graphical).

@.-;;gffféffif:--.

hardware. Based on the accessibility of hardware, they can be classified into
following categories:

1. Low-level language
2. Middle-level language
3. High-level language

Low-level language

The low-level language is a programming language that can directly
access and communicate with the hardware, and it is represented in 0 or 1
forms, which are the machine instructions. The languages that come under
this category are the Machine level language and Assembly language.

Machine-level language:

The machine-level language comes at the lowest level in the hierarchy,
so it has direct access to the hardware. It cannot be easily understood by
humans. The machine-level language is written in binary digits, i.e., 0 and 1.
It does not require any translator as the machine code is directly executed by

the computer. Machine language is the first-generation programming
language.

The assembly language:

The assembly language comes above the machine language means that
it has lesser access to hardware. It is easy to read, write, and maintain by
humans. The assembly language is written in simple English language, so it is
easily understandable by the users. In assembly language, the assembler is
required to convert the assembly code into machine code. It is a second-
generation programming language.

2. Middle-Level Language

Some special purpose middle-level languages were developed in the
past that were used as bridge between hardware and user interaction.
However, such languages have become obsolete and are not used anymore.

@

1 e
i, .
. S N

3. High-Level Language

The high-level languages brought revolution in programming world.
They allow a programmer to write the programs which are independent of a
particular type of computer. These languages are closer to human languages
than machine-level languages.

High-level languages do not have direct access to the hardware therefore a
translator (compiler or interpreter) is required to translate a high-level
language into a low-level language.

il e The high-level language is easy to read, write, and maintain as it is
. - written in English like words.
e e The high-level language is portable as opposed to low-level languages;

i.e., these languages are not dependent on the machine.

Differences between Low-Level language and High-Level language

Low-level language High-level language

It is a machine-friendly language, i.e., | It is a user-friendly language as

the computer understands the this language is written in simple
machine language, which is English words, which can be
represented in 0 or 1. easily understood by humans.

It requires the assembler to convert It requires the compiler or

the assembly code into machine code. | interpreter to convert the high-
level language instructions into
machine code.

One type of machine code cannot run | The high-level code can be

on all machines, so it is not a portable | translated to required machine-
language. code, so it is a portable language.
It has direct access to memory. It is less memory efficient.
Coding and maintenance are not easy | Coding and maintenance are
in a low-level language. easier in a high-level language.

|
|
|
|
|
|
4 Advantages of a high-level languages

@;;;;i;é:;;.-.

=
iD ¢ Distinguish among various types of translators
fE1}

2.1.3 Translators

Computers only understand machine code (binary). This code is
difficult to read, write and maintain. Programmers prefer to use a variety of
high and low-level programming languages instead. A program written in s
any language is called as source code. To convert the source code into ':[__.q

machine code, translators are needed.

Low Level Programming High Level Programming
Language Language

ol LR TR RE R EE] sale_price v 188
109 1 1 B 1) F jwale_prcs = 2 [

FOX111B01011000) A dmcourd =1 1
W TV ik

L1 AR TR] "
FOGHTT TR A 1104 . dimcam = 3,08

A translator takes a program written in source language as input and
converts it into a program in target machine language as output. It also
detects and reports the error during translation.

Roles of translator are:
e Translating the program input into an equivalent machine language
program.
Providing alert messages wherever the programmer does not follow
the rules of syntax of source language.

Different Types of Translators:

There are three different types of translators as follows:

1. Compiler

A compiler is a translator used to convert high-level programming
language to low-level programming language. Compiler takes time to do its
work as it translates high-level code to lower-level code all at once and
creates an executable file. This translated program can be used again and
again without the need for recompilation from source code.

It converts the whole program in one session and reports errors
detected after the conversion. An error report is often produced after the full
program has been translated. Errors in the program code may cause a
computer to crash. These errors can only be fixed by changing the original
source code and compiling the program again.

2. Interpreter

Interpreter is also a translator used to convert high-level programming
language to low-level programming language. However, interpreter
translates the code line by line and reports the error as soon as it is
encountered during the translation process. With interpreter, it is easier to
detect errors in source code than in a compiler. An interpreter is faster than a
compiler as it immediately executes the code upon reading the code.

Interpreters do not create an executable file. Therefore, the interpreter
translates the source code from the beginning every time it is executed.

3. Assembler

An assembler is a translator used to translate assembly language to
machine language. It is like a compiler for the assembly language but
interactive like an interpreter. An assembler translates assembly language
code to an even lower-level language, which is the machine code. The
machine code can be directly understood by the CPU.

@:};;;Z;S:;;.-.

=i

iD ¢ Differentiate between syntax, runtime and logical errors.
fE1}

2.1.4 Types of Errors
Errors are the problems or the faults that occur in the program
cause the program to behave abnormally.

Programming errors often
remain undetected wuntil the
program is compiled or
executed. Some of the errors
prohibit the program from
getting compiled or executed.
Thus, errors should be removed
before compiling and executing.

The most common errors can be generally classified as follows:

1. Syntax Error

Syntax error occurs when the code does not follow the syntax rules of
the programming language. These can be mistakes such as misspelled
keywords, a missing punctuation character, a missing bracket, or a missing
closing parenthesis. Nowadays, all famous Integrated Development
Environments (IDEs) detect these errors as you type and underline the faulty
statements with a wavy line. If you try to execute a program that includes
syntax errors, you will get error messages on your screen and the program
will not be executed.

Most frequent syntax errors are:

e Missing Parenthesis (})
¢ Printing the value of variable without declaring it
* Missing semicolon

(28) IEBERIEN
Run-Time Error

Errors which occur during program execution (run-time) after
successful compilation are called run-time errors. A run-time error occurs
when a program is asked to do something that it cannot perform, resulting in
a ‘crash’. The widely used example of a run time error is asking a program to
divide by 0.

The code contains no syntax or logic errors but when it runs it can't
perform the task that it has been programmed to carry out.

3. Logic Error

Logic errors are those errors that prevent your program from doing
what you expected it to do. On compilation and execution of a program,
desired output is not obtained when certain input values are given. These
types of errors which provide incorrect output but appear to be error free are
called logical errors. These are one of the most common errors done by
beginner programmers.

With logic errors you get no warning at all. For example, consider a
program that prompts the user to enter three numbers, and then calculates

and displays their average value. The programmer, however, made a logic i
error; one of its statements divides the sum of the three numbers by 5, and
not by 3 as it should. The program will execute as usual, without any error
messages, prompting the user to enter three numbers and displaying a result,
but not the correct one. It is the programmer who has to find and correct the
statement containing logical error.

¢ Discuss about Integrated Development Environment (IDE) of C++
¢ Develop the understanding about functions of different components
of IDE

2.2 PROGRAMMING ENVIRONMENT OF C++

C++ runs on lots of platform like Windows, Linux, Unix, Mac, etc.
Before we start programming with C++. We will need an environment to be
set-up on our local computer to compile and run our C++ programs
successfully.

221 Integrated Development Environment (IDE)
On a more basic level, IDEs

provide interfaces for users to write

code, organize text groups, and

automate programming tools. Instead

of a simple plain-text editor, IDEs

combine the functionality of multiple

programming processes into one. Most

IDEs come with built-in translators. If

any bugs or errors are found, users are shown which parts of code have

problems.

Some IDEs are dedicated to a specific programming language or set of
languages, having a set of tools and features which are helpful in writing
codes for that language. For instance, Dev-C++ is used for making programs
in C++ language. However, there are many multiple-language IDEs, such as
Eclipse (C, C++, Python, Perl, PHP, Java, Ruby and more) and Visual Studio
Code (Java, JavaScript, PHP, Python, Ruby, C, C++ and more).

Key Benefits of Integrated Development Environments:
e Serves as a single environment for most of a developer’s needs such as
compilation, linking, loading, and debugging tools.
Code completion capabilities improve programming workflow.
Automatically checks for errors to ensure top quality code.
Refactoring capabilities allow developers to make comprehensive and
mistake-free renaming changes.

2.2.2 Components of IDE

IDEs increase programmer productivity by combining common
activities of writing software into a single application: editing source code,
building executables, and debugging.

Editing Source Code
This feature is a text editor designed for writing and editing source
code. Source code editors are distinguished from text editors because they

enhance or simplify the writing and editing of code. Writing code is an

@.:;ngfféffifz--.

important part of programming. IDEs facilitate this process with features like
syntax highlighting and autocomplete.

Syntax Highlighting

An IDE that knows the syntax of your language can provide visual
cues. Keywords, words that have special meaning like class in C++, are
highlighted with different colors. Syntax highlighting makes code easier to
read by visually clarifying different elements of language syntax.

Code completion

When the IDE knows your programming language, it can anticipate
what you're going to type next. Code completion features assist programmers
by intelligently identifying and inserting common code components. These
features save developers time writing code and reduce the chances of errors.

Compiler

Compilers are components that translate programming language into a
form machines can process, such as binary code. IDEs provide automated
build processes for languages, so the act of compiling and executing code is
done automatically.

Linker

The linker opens the compiled program file and links it with the
referenced library files as needed. Unless all linker items are resolved, the
process stops and returns the user to the source code file within the text
editor with an error message. If no problems encountered, it saves the linked
objects as an executable file.

Loader
The IDE directs the operating system’s program called the loader to

load the executable file into the computer’s memory and have the Central
Processing Unit (CPU) start processing the instructions.

Debugging

No programmer can write programs without errors. When a program
does not run correctly, IDEs provide debugging tools that allow
programmers to examine different variables and inspect their code step by

@-:;;}fféffif:--.

step. IDEs also provide hints while coding to prevent errors before
compilation. Programmers and software engineers can usually test the
various segments of code and identify errors before the application is
released.

2.2.3 Introduction to Dev-C++

One of the most commonly used IDE for coding programs in C++ is
Dev-C++. It is a graphical IDE that has an integrated compiler system to
create applications for Windows as well as console. Dev-C++ is a fully
featured IDE supporting features like debugging, auto completion,
localization, syntax highlighting, class and variable browsing, project
management, package manager and others.

Installing and Configuring Dev-C++ IDE
Dev-C++ is freely available for download from this link:
https:/ /sourceforge.net/projects/orwelldevcpp/

After downloading the installation package, we can begin the
installation process. In this book, we will be using steps for installing Dev-
C++ version 5.11 with the TDM-GCC 4.9.2 compiler.

Step 1.
Select “English” as the language to be used for installation process.

Installer Language .

ﬂ Flease select a language.

English

(4 Cancel

Fig. 2.1. Step 1: Dev-C++ installation

Step 2.
Agree to the license agreement by pressing “I Agree” button.

Step 3.

Select “Full” from the dropdown for “type of Install”. This will select
all the necessary components required to run Dev-C++ and compile C++
source codes. Click on “Next” to proceed.

bl Dev-C++ 511 ¥

Choose Components
Choose which features of Dev-C++ 5. 11 you want to install. ﬂ

Check the components yau want to install and uncheck the components you don't want to
install. Click Mext to continue,

Select the type of install: Full

Or, select the optional - | Dev-C++ program files (reguired)
components you wish to - [¥] Icon files

g .[¥] TOM-GCC 4.9.2 compiler

-[] Language files

[-[¥] Assodate C and C++ files to Dev-C++
(- [+] Shortcuts

T 1e 1
Description

Space required: 346.8MB Position your mouse over a component ko see its
description,

Mullsoft Install Swskem vz, 46

Fig. 2.2. Step 3: Installation components

Step 4.

Select the installation directory where all the necessary Dev-C++ files
and libraries will be installed. Usually, the default specified path is used for
installation but you can change it if desired. Click on “Install” to begin
installation.

ke Dev-C++ 5.11 X

Choose Install Location
Choose the folder in which to install Dev-C++ 5.11. w

Setup will install Dev-C++ 5. 11 in the following folder. To install in a different folder, didk
Browse and select another folder. Click Install to start the installation.

Destination Folder

C:\Program Files (x8a6)\Dev-C Browse,..

Space required: 346.3MB
Space available: 319, 7GE

rullsoft Install System w2, 46

< Back Install Cancel

Fig. 2.3. Step 4: Install location

Step 5.

The installer will show the progress for installation. Once the process
completes, it will show a “Finish” dialog. Make sure the “Run Dev-C++ 5.11”
box is checked. This will automatically start Dev-C++ IDE after this
installation completes. Click “Finish” button to complete the installation
process.

EE Dev-C++ 511

Completing the Dev-C++ 5.11 Selup
Wizard

Dew-C4+ 5. 11 has been msinled on your computer.

Ok Fnish 19 dode thes wagard,

b1 Ran Dev-C++ 5. 11

Fig. 2.4. Step 5: Finish installation

Configuring Dev C++

When Dev-C++ IDE is run for the first time, it will require some
configuration. This configuration will be used while developing programs in
the IDE.

Set “English (Original)” as default interface language in the Dev-C++
first time configuration dialog. Click “Next” to continue. On the “theme”
selection dialog, leave the default settings and click on “Next” to continue.
Then click “OK” to close first time configuration dialog.

Dev-C++ first time configuration

#include <iostream:
Select your language:

int main(int argec, char®™ argv) |pulgarian (Augaasnes)
std::cout << "Hello world!h Catalan (Catali)
return @; 1sal30DIA/Chinese

Chinese (TW)

Croatian

Czech {Ee"stina]

Danish

Dutch (Mederlands)

English (Original)

Estonian

French

Galeao

You can later change the language at Tools > =
Environment Options = > General.

P Next

Fig. 2.5. Configuring Dev-C++

Linker Setting for Debugging

Sometimes an in-depth information is required from the debugger to
properly identify the problems in our source code when a program is

"'* debugged. To obtain such information, our newly installed IDE and its

~ integrated compiler needs to be configured. The following steps are used to
enable this configuration:

1. Click on Tools -> Compiler Options.

2. Open the Settings tab from the Compiler Options dialog.
3. Under Settings tab, open Linker tab.
4

In the Linker tab, change the Generate Debugging Information (-g3)
option to Yes.
Click on OK to save settings.

IDEGHESER 8 ~~ AR BE (€40 Semilvix a8 oo
i-]*.' {glohalal

Project Classes - Dl Compiler Ophans
Compie vl o configure
TOM-GCC 492 4-bi Relense Sk -

Geressl Seings | Deectones Pingremi

Coptori Code Generation Wamings Frofifing Linksr Oupal
Liniic an Obgectss C progrem | -lekjc)

Garsratn debugging inlpmation §-g3]

(o ned e standard gysiem bbranes |-noudih)

Do bt cragle & consobe window | <muandme)

Sinp extcidnkle (-5}

Fig. 2.6. Dev-C++ Computer options

@.,;;;;2;2:;;.-.

Developing Programs in Dev-C++

C++ development is done by writing source codes and saving those
tiles for compilation. Dev-C++ provides good project management support to
help manage C++ files and group them into projects. The steps to create a ' ‘
new project in Dev-C++ are:

1. Click on File -> New -> Project.

2. From the New Project dialog, make sure Empty Project is selected.
From language options, select C++ Project. Then enter a Name for
your project.)
Click on OK. Dev-C++ will ask for the path where you want the new '
project to be stored. Once it is done, Dev-C++ will open a workspace. It | E
will show Project Explorer on the left side that shows the project we |
just created.

™

Filf Edlit Caarrh Yroiect Execute Tool AShile AT s iy .._I

|L'IEI!l=IlIIl. ~o|[BRINE|GEO)[EmE v »
i |
.F'fiiﬂ! ﬂli';l:i Debug

| M Project

| Basic Multimedis Wind2 Console

Elﬁﬂ]

Caonzols Static Lbrary
.ﬁn:!l.l:d.rm Apphcation

An empty project (1 Praject) T Propect
Mre || Mzke default language
TestPraject!

X e

Fig. 2.7. Creating new project

@.:;;555555525:.-.

Add Files to Project

A project requires source files which will contain codes for your

program. The steps to create a new file are:

1.

2.

Click on Project -> New File. Alternatively, you can also right-click on
the Project Name in the Project Explorer and click on New File.

Click on Yes on the Confirm dialog to add a file. This file is not stored
until it is deliberately saved.

. To save newly added file, click on File -> Save. Enter a path where you

want to save the file and provide its name. Click on Save to store the
tile.

Compile and Execute Project

After writing the source codes in files, the project needs to be compiled

and executed to see its output. Follow these steps to compile and run a
project:

1.

The project needs to be compiled before execution. To compile, click on
Execute -> Compile or press F9 key. Compile Log tab shows the

compilation status. Compiler tab will show if there are any syntax

€rrors. i

After successfully & o oS guia =~ BB EE 68 @ 50858 vin e
compiling the project, #&® -

NHI Clomm |1

run it by clicking on @ G L B

=
] imipqumy 3 sty smmipes i
L 1

Execute -> Run or by :$ AEess LT e |
pressjng FlO key. .I l =l I_

A console window will
A oo Wl e iR Ceremiog o Dody B Pl ity O Ciee

Open and ShOW the ol Filsuesai 20t des e harhoen L
output of the program. EETT

Fig. 2.8. Compile and execute project

@-:;;;;255:;;.-.

— ¢ List out different reserved words commonly used in C++ program
ﬁ ¢ Use different data types in a C++ program

2.3 C++ PROGRAMMING LANGUAGE
C++ is a general-purpose programming
language that was developed as an enhancement

of the C language to include object-oriented
concept. It was created by Bjarne Stroustrup and
its main purpose was to make writing programs
easier and more pleasant for the individual
programmer.

C++ is a high-level language with an advantage of programming low-
level (drivers, kernels) and even higher-level applications (games, GUI,
desktop apps etc.). The basic syntax and code structure of both C and C++ are
the same.

2.3.1 Reserved Words

A reserved word in C++ is . .
a word whose meaning is already ., o long long ‘Jrfé;:':i o
defined by the compiler. A orintf o ClE8 e ."_;éld .
reserved word cannot be used as iy L gy
an identifier, such as the name of T I:-'i“-'“t']-ﬂ P
a variable, function, or label - it is #include
"reserved from use in C++". A A

reserved word is part of syntax £loat bool

sEoisE

]

and may not have any specific e BER
meaning in English language.

There is a total of 95 reserved words in C++. The reserved words of C++ may
be conveniently placed into several groups. In the first group, we put those
that were also present in the C programming language and have been carried
over into C++. There are 32 of these.

i

T
LY

@

There are another 30 reserved words that were not in C, are therefore new to
C++ programming language. Some of the commonly used C++ reserved are:

and break case
auto char do
bool class else
catch const export
default continue float
double delete goto
enum explicit inline
extern false module
for friend new
if import or
int long protected
nullptr namespace short
public not static
requires operator struct
signed private template
switch register throw
this return typedef
true sizeof union
unsigned try virtual
void using while

2.3.2 C++ Data Types

You may need to store information of
various formats and sizes like character,
integer, floating point, double floating
point, boolean etc. These formats and sizes

are defined as data types. Based on the data
type of a storage, the operating system
allocates memory and decides what kind of | g

|
|
|
|
|
|

. data can be stored in that allocated memory. r.lr |

. . * . ¢ k! r

O o R [

J

S —

)

}

C++ offers the programmer various types of built-in as well as user
defined data types. Following table lists down some of the basic C++ data

types:

Type Keyword Size Range
Boolean bool 1 byte |0 (false), 1 (true)
Character char 1 byte | -127 to 127 or 0 to 255
Integer int 4 bytes | -2147483648 to 2147483647
Floating point | float 4bytes | 1.5 x 1074 to 3.4 x 1038. Stores
fractional numbers. Sufficient for
storing 7 decimal digits
Double double 8 bytes |5.0 x 1073 to 1.7 x 10%%. Stores
floating point fractional numbers. Sufficient for
storing 15 decimal digits

SL0s ¢ Differentiate between variable and constant
El ¢ Comprehend variable declaration rules in C++
¢+ Differentiate between variable declaration and initialization

24 CONSTANTS AND VARIABLES

A constant is a value that cannot be altered
by the program during execution, i.e., the value is
constant. When associated with an identifier, a
constant is said to be “named,” although the terms
“constant” and “named constant” are often used
interchangeably. This is contrasted with a variable,
which is an identifier with a value that can be
changed during execution.

24.1 Constants and Variables

A constant is a data item whose value cannot change during the
program’s execution. Thus, as its name implies - the value is constant.
Constants are used in two ways. They are:

1. literal constant
2. defined constant

l':" "'-.. @ . : .

A literal constant is a value you type into your program wherever it is
needed. Examples include the constants used for initializing a variable and
constants used in lines of code:

21,12.34, 'A', "Hello world!", false, null

In addition to literal constants, there are symbolic constants or named
constants which are constants represented by name. The const keyword and
#define preprocessor are used to define a constant. Many programming
languages use ALL CAPS to define named constants like const float PI =
3.14159; OR #define PI 3.14159.

A variable is the memory location that can hold a value. This value can
change during the program’s execution. It does not remain constant. For
example, a classroom with a capacity of 20 students is a fixed place or
constant but the subjects taught, teachers and students will vary with each
class and subject and are variables.

Variables do not require to be assigned initial values. Variables once
defined may be assigned a value within the instructions of the program.
Variable can be assigned different values at different times during execution.
For example:

x =D5;

x =237;

Difference between Constant and Variable:

Constant Variable

A constant does not change its
value during program execution.

A wvariable, on the other hand,
changes its value depending on
instructions.

Constants are usually written in
numbers and may be defined in
identifiers.

Variables are always written in
letters or symbols.

Constants usually represent the
known values in an equation,
expression or in line of
programming.

Variables, on the other hand,
represent the unknown values.

@:;;;;2;2:;;.-.

2.4.2 Rules for Naming Variables
The general rules for constructing names for variables (unique
identifiers) are:

Names can contain letters, digits and underscores
Names must begin with a letter or an underscore (_)
Names are case sensitive (myVar and myvar are different variables)
Names cannot contain whitespaces or special characters like !, #, %, etc.
Reserved words (like C++ keywords, such as int) cannot be used as
names

e Names cannot be longer than 32 characters in C++ by default.

2.4.3 Declaring (Creating) and Initializing Variables

In C++, there are different types of
variables (defined with different keywords).
A variable declaration tells the compiler
where and how much storage to create for the
variable. A variable declaration specifies a
data type and name for that variable as
follows:

Syntax
data_type variable_name;

Where type is one of C++ data types (such as int), and variable_name is
the name of the variable (such as x or myName).

Initialization

Variables can be initialized (assigned an initial value) in their
declaration. The initializer consists of an equal sign followed by a constant
expression as follows:

Syntax
data_type variable_name = value;

The equal sign is used to assign values to the variable.

Strings in C++

Variables that can store non-
numerical values that are longer than STnlms
one single character are known as IN C LANGUAGE
strings.

The C++ language library provides support for strings through the
standard string class. This is not a fundamental type, but it behaves in a
similar way as fundamental types do in its most basic usage. Strings can be
declared without an initial value and can be assigned values during
execution.

A computer program is a list of instructions that tell a computer what to
do.
We refer to syntax in computer programming as the concept of giving

specific word sets in specific orders to computers so that they do what we
want them to do.

Different programming languages can be classified into high, middle and
low-level languages.

High-level languages are easy to read for humans and contain English
language like words.

Middle-level languages have a human readable format along with direct
control over the machine’s resources.

Low-level languages are easy for machines to read and hard for humans.
Low-level programs mostly comprise of binary digits and memory
operators.

There are three types of translators namely, compilers, interpreters and
assemblers.

Compilers convert high-level languages into machine readable format.
Interpreters also convert high-level programs into machine readable
format.

.@?-:;;;;255:;;.-.

Unlike compilers, interpreters convert instructions line-by-line.
Assemblers convert low-level languages into machine readable format
with added benefit of being interactive like an interpreter.

Programming errors prevent the program from being compiled or _

executed.

Syntax errors are words or symbols unrecognized by a particular
programming language.

Runtime errors only occur during program execution mostly due to an
invalid input.

Logical errors are considered when incorrect results are obtained based on
provided input.

Logical errors do not interrupt program execution.

Integrated Development Environments (IDEs) are programs that facilitate
writing, compiling and executing codes.

IDEs usually provide a single environment for programmers to write and
executes codes efficiently.

C++ is a general-purpose high-level programming language.

Reserved words are part of programming language syntax and cannot be
used as name of variable, function or label.

A constant is a named identifier having a value that cannot be changed.

A variable is a named identifier with a value that can be changed during
normal execution of program.

Different types of values can be stored in variables. These types are called
data types such as int, string, bool, etc.

A variable can be declared by giving it a name and type. It can also be
initialized during declaration by assigning a value to it.
In C++, a variable is defined and initialized as:

“data_type variable_name= value;”

C++ offers various data types for holding values in variables.
These data types allocate system memory based on its type.

A. ENCIRCLE THE CORRECT ANSWER:
A computer program is a collection of:
a. Tasks b. Instructions
c. Computers d. Programmers
High-level languages have syntax that is:
a. Easily readable by humans b. Easily readable by machines
c. Easily readable by both d. None of the above
Low-level languages have syntax that is:
a. Easily readable by humans b. Easily readable by machines
c. Easily readable by both d. None of the above
The primary characteristic of a compiler is to:
a. Translate codes line-by-line
b. Translate low-level code to machine language
c. Detect logical errors
d. Translate codes all at once
The primary characteristic of an interpreter is to:
a. Translate codes line-by-line
b. Translate low-level code to machine language
c. Detect logical errors
d. Translate codes all at once
An Integrated Development Environment facilitates a programmer to:
a. Edit source code b. Complete and highlight syntaxes
c. Debug and compile codes d. All of the above
All errors, detected by users are typically:
a. Syntax Errors b. Semantic Errors
c. Run- Time Errors d. Logical Errors
Allowed names for declaring a variable:
a. Can contain whitespaces
b. Can be one of the reserved words
c. Can contain letters, digits and underscores
d. Can be the same as its data type

@;;gffféffif:--.

A bool data can store following type of value:
a. Numbers b. Strings
c. Fractional numbers c. True or false
Which data type occupies the most space in memory?
a. Character b. Integer
c. Floating point d. Double floating point
B. RESPOND THE FOLLOWING:
1. What is computer program?

. List five common high-level languages used and describe their
purpose.

. Using the rules of naming variable, develop ten meaningful and valid
variable names.

. Write and two differences between machine and assembly language..

. What are Strings in C++?

. What is the difference between declaring and initializing a variable?

. What is the difference between source code and object code?

. List any four advantages of using an IDE.

. In groups, students should learn to download, install and configure
Dev C++.

. Teacher demonstrates the use of IDE and its features as given in this
unit. Also explains the use of variable and constants.

	Unit 2 Computer 10th.pdf
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28

	Unit 3 Computer 10th.pdf
	Page 20
	Page 21
	Page 22

	Unit 4 Computer 10th.pdf
	Page 20
	Page 21
	Page 22
	Page 23

	Unit 7 Computer 10th.pdf
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24

