A Textbook of Computer Science 131 Class 12
e e e e e Rl e e - - 5 — e

Chapter

8

8.1 OVERVIEW

A computer is a device that follows the instructions given to it. A well-defined
set of instructions given to the computer is called a computer program. A computer
program is written in a programming language. Since the emergence of computer,
many programming languages have been developed but the effect of C on the
computer world is everlasting. This book will remain incomplete without describing
the history of the C. That's why before going into detail; let us have an overview of
the history of C.

History of C

The C programming language was developed by Dennis Ritchie in 1972 at
AT & T Bell Laboratories. It was derived from an earlier programming
language named B. The B was developed by Ken Thompson in 1969-70 and
provided the basis for the development of C. The C was originally designed to
write system programs under UN]}{‘E'csperating system. But over the years its
power and flexibility have made it popular in industry for a vide range of
applications. The earlier version of C was known as K&R (Kernighan and
Ritchie) C. As the language further developed, the ANSI (American National
Standards Institute) developed a standard version of the language known as
ANSIC. '

8.2 ~ DEVELOPING A C PROGRAM (A STEPWISE APPROACH)

Writing a program in C is not too difficult; however it requires a good
understanding of the development environment of C language. The programmer
should also have the knowledge of steps required to prepare a C program for
execution.

As a first step, install a compiler for the C lunguage on the computer so that
the source program can be compiled and e: .cuted. Many compilers for C language
are available from number of vendors. Any of them can be sed, but we recommend
using Turbo C++.

Getting Started with C 132 Chapter 8
e e bt — =

Turbo C++ is a Borland International’s implementation of a compiler
for C language. In addition to a compiler, TC provides a complete IDE
(Integrated Development Environment) to create, edit and save programs is
called TC editor (Fig. 8.1). It also provides a powerful debugger that helps in
detecting and removing errors in the program.

Once the TC (Turbo C) has been installed, it is very easy to write C
programs in its editor. The IDE can be invoked by typing tc on the DOS
prompt or by double clicking the TC shortcut. The menu bar of the IDE
contains menus to create, edit, compile, execute (Run) and debug a C
program. A menu can be opened by either clicking the mouse on it or pressing
the first highlighted character of the name of the menu in conjunction with the
Alt key. For example to open File menu, press Alr+F (hold down Alt key and
‘then press F key).

= Iile Fdit Search Run Compile Debug Project Options Window Help

® 77 Creatin

To write the first C program, open the edit window of the Turbo C++ IDE.
This can be done by selecting FilelNew option from the menu bar. A window

A Texthook of Computer Science 133 . Class 12

appears on the screen (Fig. 8.2). This window has a double-lined border, and a
cursor inside the window repres
= file Edit Search oL

ents the starting point to write a program.

ile ['ebuyg Project (ptions Window Hilp

Fig. 8.2 Create, Edit and Save a Program

We can expand this window by clicking the arrow in the upper right corner, or
by selecting WindowlZoom from the menu bar. We can also navigate through
the program by using the vertical and horizontal scroll bars or by using arrow
keys.
8.2.3 Saving a C Program

After writing the C program, we should savc it on the disk. This can be
done by selecting FilelSave command from the menu bar or pressing the F2
key. When we select FilelSave, a dialogue box will appear. At the top of this
dialogue box, there is a text box with caption Save File As. Type the name of
the file in it and press the Enter key. The default path for saving the file is BIN
folder. The TC assigns a default name NONAMEQO.cpp to the file (Fig. 8.2).
To save the file in a specific folder / location with a different file name, one
has to specify the absolute path.
Note: :

Turbo C++ is a compiler for C++ programming language — an extension to C.
Therefore it can compile programs of both C and C++. When we save a
program with .cpp extension, it can use many additional features that are not
supported in ANSI C. As this course is designed just for C, not C++,
therefore it is suggested to always save the programs with .c extension. When
a program is saved with .c extension, the Turbo C++ compiler restricts it to
only use standard features of C. -

8.2.4 Compiling a C Program

The computer does not understand source program because
instructions in the program are meaningless to the microprocessor, as it

Getting Started with C 134 Chapter 8
h

understands only the machine language. A program that is to be executed
must be in the form of machine language.

C compiler translates the source program into an object program with
.obj extension. To invoke Turbo C++ compiler, select CompilelCompile from
the menu bar or press Alt + F9 key (Fig. 8.2). If there is no error in the source
program, the program will be translated to object program successfully
otherwise, the compiler will report errors in the program.

* The program written in any high level programming language, such as C,
15 called source program.
¢ The compiler produces an object program from the source program

8.2.5 Linking a C Program

While writing a C program, the programmer may refer to many files to
accomplish various tasks such as input/output etc. In case of C language, a lot
of functionality is available in the form of library files. Rather than
reinventing the wheel, most of the times we prefer to use the built-in
functionality of the language. Such files are needed to be linked with the
object file, produced by the compiler, before execution of the program.

Linking is the process in which the object file produced by the
compiler is linked to many other library files by the linker. The linker is a
program that combines the object program with additional object files that
may be needed for the program to execute and save the final machine
language program as an executable file on disk. In Turbo C++, the linker can
be invoked by selecting CompilelLink from the menu bar.

The Linker combines different library files to the object file and produces an
executable file with .exe extension

8.2.6 Executing a C program

After successfully compiling and linking the program, we are now
ready to execute it. For execution the program must be loaded into memory.
This is done by the loader. Loader is a program that places executable file in
memory. In Turbo C+4+, this is done by selecting RunlRun from the menu bar
or pressing Crri+F9 key.

When the program is run, the screen flickers for a moment and the
output screen will disappear in a flash. To see the program’s output select
WindowlUser Screen or press Alr+F5. The normal DOS output screen will
appear. Flowchart 8.3 describes the steps required to prepare a C program for
execution.

Setting the Output and Source Directories

By default, Turbo C++ places the object and executable files in the BIN
subdirectory of the TC directory. This is not the right place to put these files.
These files should be placed in the same directory where the source file (with
.c extension) was created. To do so, select the OptionlDirectories from the

A Texthook of Computer Science 135 Class 12
M

menu bar. A window appears with four fields captioned Include Directories,
Library Directories, Output Directories and Source Directories. The Include
Directories filed should already be set to drive\TCAINCLUDE and Library
Directories should be set to drive:\TC\LIB, where the drive: is the drive in
which the directory TC is placed. It can be C, D, or E etc. We need to set the
output directory field to source file directory e.g., D:\MyPrograms etc. this is
where the compiler will put .obj file and the linker will put .exe file.

Getting Started with C 136 Chapter 8

m

8.3 BASICSTRUCTURE OF A C PROGRAM

The structure of a C program is very flexible which increases the power of the
language. C is a structured programming language: therefore it provides a well-
defined way of writing programs. As discussed earlier in this chapter that a C
program is combined with many other files before execution. The linker does this job.
But we have to specify these files to be linked. How can this be done? To answer this
question and to understand the basic structure of the C program, we proceed with the
following example:

* In unstructured programming languages, the entire logic of the program is
implemented in a single module (function), which causes the program
error prone, difficult to understand, modify and debug.

» In structured programming languages, the entire logic of the program is
divided into number of smaller modules, where each module (piece of
code) implements a different functionality.

Hello World - A simple C program
Let us consider a simple C program that displays the phrase Hello World! on
the screen.

#include <stdio.h>
void main (void)

(

}

The above Hello World program has two parts:
» The preprocessor directive (#include <stdio.h>)
» The main function

printf(“Hello World!™);

8.3.1 Preprocessor Directives .

Preprocessor directives are commands that give instructions to the C
preprocessor. The preprocessor is a program that modifies the C program (source
program) prior to its compilation. A preprocessor directive always begins with
the symbol (#). In the above program, include is a preprocessor directive.

Many actions necessary for a computer program, such as input and
output, are not defined directly in a C program. Instead, these actions are
defined in the form of functions in different C libraries. Each library has a
standard header file, which is referred to with .k extension. In the above
program, the stdio.h refers to the header file containing the definition of
standard input/output functions.

A Texthook of Compurter Science 137 Class 12

e e e ———

The include directive gives a program access to a library. This directive
causes the preprocessor to insert definitions from a standard header file into a
program before compilation. Hence, the statement #include<stdio.h> gives
the program access to standard input and output functions,

include Directive for Defining Identifiers from Standard Libraries
SYNTAX: #include<standard header file>

EXAMPLE: #include <stdio.h>
#include <math.h>

The include directive tells the compiler where to find the meanings of
standard identifiers (e.g., printf in the Hello World program) used in the
program. These meanings are described in files called standard header files.
The header file stdio.h contains information about standard input and output
functions such as scanf and printf, whereas the header file marh.h contains
information about common mathematical functions.

Another important preprocessor directive is #define directive. It is
used to define a constant macro. Examples of this macro will be discussed in
subsequent chapters.

#define Directive for Defining Constant Macros
SYNTAX: #define Macro_MName expression

EXAMPLE: #define Pl 3.142857
#define SEC_PER_HR 3600

The expression may be constant, arithmetic expression or a string. C
preprocessor replaces each occurrence of the identifier Macro_Name with
value of expression. The expression of the identifier Macro_Name can not be
changed during the program execution.

Constant Macro is a name that is replaced by a particular constant value
before the program is sent to the compiler.

8.3.2 FUNCTION main

As shown in the above Hello World program, the definition of the
main function comes next to the specification of the #include preprocessor
directive. In fact, main is the function where the execution of the C program
begins. Every C program has a main function. The rest of the lines of program
forms the body of the main function, the body is enclosed in braces { and }.

Getting Started with C 138 Chapter 8
. e s ——————

C programs are divided into units called functions. This division is
usually done on the basis of functionality, where every function carries out a
single task. However, it is no necessary to divide every program into
functions. The same functionality may be achieved through a single function.
But, every C program must have the functions main as the execution of the
program starts from there. In this way we can say that the main function is
actually the entry point of the C programs.

main Function Definition
SYNTAX: voild main (void)
{

J

body of main function

As we know from the algebra that every function returns a single value and
may accept one or more arguments (parameters). There is some resemblance
between an algebraic function and the main function. The definition of the
function main starts with a reserved word void. This void represents the data
type of the value that is returned by the function, which means the function
main returns nothing. The second void enclosed in parenthesis describes that
the function main does not accept any argument. However arguments can be
passed to the main function and it can also return a value. But the discussion
of this issue is out of scope of this book. You may find the topic in detail in
many other books.

Body of the function (enclosed in braces) consists of C language statements,
which are used to implement the program logic. There are many types of C
statements that help programmers to write C programs. We shall learn much
more about writing programs in C in next chapters.

833 Delimiters

Next to the function definition are braces, which indicate the
beginning and end of the function body. These braces are called delimiters.
The opening brace { indicates the beginning of a block of code (set of
statements) while the closing brace } represents the end of a block of code.

A Textbook of Computer Science . 13% Class 12
e e e e e ————

8.3.4 Statement Terminator

Every statement in a C program terminates with a semicolon (3). If any
of the statement is missing the statement terminator, the compiler will report it
the following error message.

Statement missing ;
Note: Always be careful about the semicolon while writing C program statement

8.3.5 Function printf

The last statement in the Hello World program is printf function. It is used
to display the output of the program on the screen. See detail in chapter 3.

84 COMMON PROGRAMMING ERRORS

The programmer may come across errors while writing a computer program.
In programming languages, these errors are called “bugs”, and the processing of
finding and removing these bugs is called debugging.

When the C compiler detects an error, it displays an error message describing
the cause of the error. There are three types of programming errors, these are: Syntax
error, Runtime error, and Logic error.

8.4.1 Syntax Errors

A syntax error occurs when the program violates one or more grammar
rules of C language. The compiler detects these errors as it attempts to
translate the program. If a C statement has syntax error, it can not be
translated and the program could not be executed.

There can be many causes of syntax errors, for example, missing
statement terminator i.e., the semicolon, using a variable without declaration,
missing any of the delimiters i.e., { er } etc.

8.4.2 Runtime Errors

A runtime error occurs when the program directs the computer to
perform an illegal operation, such as dividing a number by zero. Runtime
errors are detected and displayed by the computer during the execution of a
program. When a runtime error occurs, the computer stops executing the
program and displays a diagnostic message.

8.4.3 Logical Errors

Logical errors occur when a program follows a faulty algorithm. The
compiler can not detect logical errors; therefore no error message is reported

Getting Started with C 140 Chapter &
e e e e e T T ————— 2

o0
n

from the compiler. Moreover, these errors don’t cause the program to be
crashed, that’s why these are very difficult to detect. One can recognize
logical errors by just looking at the wrong output of the program. Logical
errors can only be detected by thorough testing of the program.

PROGRAMMING LANGUAGES
Programming languages are used to write computer programs. There are two

broad categories of programming languages i.e., low level programming languages
and high level programming languages. We discuss them briefly to have an overview
of both:

8.5.1 Low Level Languages

Low level languages are divided into two broad categories i.e.,machine
language and assembly language. Machine language is the native language of
the computer. The computer does not need any translator to understand this
language. Programs written in any other language must be converted to
machine language so that the computer can understand them. Every machine
language instruction consists of strings of binary Os and 1s. As it is very
difficult for human beings to remember long sequences of Os and 1s, therefore
writing programs in machine language are very difficult and error prone. So,
it was thought to replace the long sequences of Os and 1s in machine language
with English like word. This idea provided the basis for the development of
assembly language.

In assembly language, machine language instructions (long sequences
of Os and 1s) are replaced with English like words known as mnemonics
(pronounced as Ne-Monics). An assembler (language translator for assembly
language programs) is used to translate an assembly language programs into
machine language.

8.5.2 High Level Languages

Programming languages whose instructions resemble the English
language are called high level languages. Every high level language defines a
set of rules for writing programs called syntax of the language. Every
instruction in the high level language must confirm to its syntax. If there is a
syntax error in the program, it is reported by the language translator (compiler
or interpreter). The program does not translate into machine language unless
the error is removed.

Common high-level languages include C, C++, Java, Pascal,
FORTRAN, BASIC, and COBOL etc. Although each of these languages was

A Textbook o: Cﬁmgurﬂr Science 141 Class 12

designed for a specific purpose; all are used to write variety of application
software. Some of these languages such as C and C++ are used to write system
software as well. Each of these languages has some advantages and
disadvantages over the other e.g., FORTRAN has very powerful mathematical
capabilities while the COBOL is ideal for writing business applications, C and
C++ are very handy for writing system software while Java is equipped with
strong network programming features. Besides having different features, all
high level programming languages have some common characteristics are:

These are English like languages, hence are close to human languages
and far from the machine language and are very easy to learn

Programs written in high level languages are easy to modify and
debug, and more readable

These languages let the Programmers concentrate on problem being
solved rather than human-machine interaction

These describe a well defined way of writing programs

These do not require a deep understanding of the machine

_architecture

High level languages provide machine independence. It means
programs written in a high level language can be executed on many
different types of computers with a little modification. For example,
programs written in C can be executed on Intel® processors as well as
Motorola processors with a little modification. :

Gzrring Started with C 142 C‘grer 8

Exercise 8c

1 Fill in the blanks:

(i)

(ii)
(iii)

(1v)
(v}

(vi)

(vil)

{viii)
(ix)
(%)
(xi)
(xii)

{i)

(11)

(iii)

{iv)

The set of instruction given to the computer to solve any kind of
problem is called

ANSI stands for
The program written in high level language is known as

is a program that places the executable file in memory

In programming language , the entire logic of the
program is implemented in a single module

are command that give instruction to C preprocessor

i5 a name that is replaced by particular constant before
program is sent to the compiler
The directive gives a program access to a library file
C program is divided into units, called
Every statement in a C program terminates with a
A language translator for Assembly language is called

A set of rule for writing program in high level language is known
as

2 Choose the correct option:

Cisa:

4) High Level Language b) Low Level Language

¢) Assembly Language d) Machine Language

Turbo C++ can compile:

a) C++ programs only b) C and C++ programs

¢) Turbo C programs only d) Turbo C++ programs only
Debug is the process of:

4) Creating bugs in program b) Identifying and removing errors
¢) Identifying Errors d} Removing Errors

C was designed to write programs for:
4) Windows operating system b) Solaris operating system
¢) Unix operating system d) OS/2 operating system

Preprocessor directives are commands for:
a) Microprocessor b). Language processor
¢) C preprocessor d) Loader

A Textbook a: Cnmgu:er Science 143 Class 12

{vi)

{vii)

The expression in define directive:

a) can only be changed at the end of the program
b) can not be changed

c) can not be changed but can be redefine

d) can not be assigned a value

Which of the following language requires no translator to execute the

program:
a) C b) C++
¢) Machine language d) Assembly language

(viii) .exe file is produced by the: _
a) Linker b) Loader
¢) Compiler d) Interpreter

(ix) Which of the following key is used to save a file?
a) F2 b) F3
c). F3 d) F9

(x) void occupy how many bytes in memory?
a) zero b) one
c) two d) four

3 Write T for true and F for false statement:

(i) The C programming language was developed by Dennis Ritchie in
1972.

(i) C was derived from earlier programming language named B.

(i11) The B was developed by Ken Thomson in 1980.

(v} The short-key for compiling a program is Alt+F9.

(v) The compiler produces the source file from an object file-

(vi) The linker is a program that combines the object program with
additional files.

(vii) The short-key for executing the C program is Alt + F5.

(viii) In structured programming the entire program is divided into smaller
modules.

(ix) The value of a constant can be changed during the program
execution.

(x) High level language provide machine independence.

Geﬁhg&'mrred with C 144 {.'Egrerﬂ

G

¥]

10

Briefly describe the history of C.

List two reasons why it would be preferable to write a program in C rather
than machine language.

What necessary steps taken to prepare a C program for execution? Explain
with diagram.

Define a bug. Discuss some debugging features of Turbo C++.

While writing a C program, how many types of errors can occur? Discuss
briefly. Which one is the most difficult to locate and remove? Justify your
answer. - '

What is a programming language? Discuss the two main categories of
programming languages.

Describe characteristics of high-level programming languages.
Briefly describe the basic structure of a C program.

How would you create, edit, compile, link and execute a C program? Discuss
briefly.

Differentiate the following:

(1) Preprocessor Directive and the Compiler
(1) Structured and Unstructured programming languages
(i1} Linker and Loader

