10.1 OVERVIEW

In previous chapters, we have studied the basics of C programs. This lesson
covers basic input and output features of C language. Usually input and output form
an important part of any program. To be more interactive, a program needs to be able
to accept data and show results.

In C, the standard input/output library provides functions to perform input and
output operations. By standard input and output, we mean the keyboard and monitor
respectively. In C, these input/output operations are performed by two standard
input/output functions, these are printf() and scanf(). These functions can be
accessed by including the standard input/output library (stdio.h) in the program. Let
us have an overview of standard input/output functions.

10.1.1 printf Function

To see results of program execution, we must have a way to specify
what variables values should be displayed. The standard library function printf
(pronounced as print-eff) is used for formatted output. It takes as arguments a
format string and an optional list of variables to output. The values of
variables are displayed according to the specifications in the format string.

The printf () function will take the form:
printf(format string, varl, var2, var3,);
printf(format string);

Thefammrstringisachamﬂterstdng—mmingmeandtt:wﬂablcsm
optional. The easiest way to understand this is by example.

fngu#@mgur 164 Chapier 10

Example 1 Write a program to calculate and print the area of a
— square.

#include <stdio.h>
void main()
{
int height, width, area;
height = 5;
width = 4;
area = height * width;
printf(“Area of Square = %d”, area);
}

Here’s the output of the program:
Area of Square = 20

In the above program, the first line is the variable declaration statement. In
second and third lines, values are assigned to the variables height and width.
Fourth line of code describes the arithmetic expression for calculating the area
of the square and the result is assigned to the variable area. Fifth and the last
line of code is the printf() statement, which displays result on the screen. In
case of prinif, the first parameter is always a string (e.g,"Area of Square"),
which should be enclosed in double quotes. This string is called the format
string. Format string may include any number of format specifiers such as %d.
The list of variables separated by commas, whose values are to be displayed in
the result, will follow the format string.

10.1.2 Format Specifier

Format specifiers specify the format in which the value of a variable should
be displayed on the screen. Format specifiers are specified in the format string.
For instance, in the above program the printf() statement contains the symbol

%d, which is format specifier for the variable area. For different types of
variables, different format specifiers are used. Here is the list of format

specifiers:
Jod int, short
Gt float
Golf double
e float, double (Exponential Notation)
Tog Floating point (%f or %e, whichever is shorter)
Yo char
Jes Character string
%u- . unsigned short, unsigned int
Fox Unsigned hexadecimal integers
Tl Integers

Fold long integer

A Textbook of Computer Science 165 Class 12
e e L e e

Example 2 Write a program that adds two
floating point numbers and shows
their sum on the screen.

#include <stdioc.h>

void main(void)
{
float varl, var2, res;

varl 24.27;

vara 11.50;

res = varl + varZ;

printf(~%f + %f = %f*, varl, var2, res);

}
Here's the output of the program

24.27 +41.5=65.77
10.1.3 Field-width Specifier

In a C program, the number of columns used to display a value on the
screen is referred to as field-width. Field-width specifiers describe the number
of columns that should be used to print a value.

Formatting Integers

We simply need to add a number between the % and d of the %d format
specifier in the printf format string. This number specifies the field-width or
the number of columns to be used for the display of the value. The statement
printf(“Area = %4d”, area);
indicates that four columns will be used to display the value of area. Suppose
the value of the variable area is 25. Two extra spaces will be padded before
25 on the screen to complete the length of 4. The output of the above
statement will be as follows:
Area =[1125
Here, [1 represents a blank space. This space will not be displayed as a printed
character in actual output. In this way the value of 25, which requires two
spaces to be displayed, will occupy four spaces (columns) on the screen. The
reason is that the format specifier for area (%4d) allows spaces for four digits
to be printed. Because the value of area is 25, therefore its two digits are right
justified, preceded by two blank spaces.

= - ——

Input/Outpur 166 Chapter 10

—_— .- e

The following table shows how values are displayed using different format

specifiers.

'Value Format Displayed Value Format Displayed
786 Sedd 786 -786 Tedd -786

786 95d (11786 -786 b5d [I-786
786 %od 786 -786 Tod [-786
786 Seld 786 -T86 %e2d -786

The last row of this table shows that C expands the field width if it is too
small for the integer value displayed.

Formatting Floating Point Numbers

For format specification of floating point numbers, we must indicate both the
total field widrh needed and the number of decimal places desired. The total
field width should be large enough to accommodate all digits before and after
the decimal point e.g., to display 15.245 and 0.12 the total field width should
be six and four respectively. It should be noted that for numbers smaller than
zero, a zero is always printed before the decimal point. Therefore the total
field width should include a space for the decimal point as well as for the
minus sign if the number can be negative.

The general form for the format specifier for a floating point value will be
9om.nf, where m represents the total field width, and n represents the desired
number of decimal place. For instance, the statement

printf{(*Height = 6.2f", height);

indicates that the total field width for the value of the variable height is 6, and
the accuracy is of two decimal places. The value of height will be rounded off
to two decimal places and will be displayed right justified in 6 columns. While
being rounded off, if the third digit of the value’s fractional part is 5 or
greater, the second digit is increased by one otherwise the third digit is
discarded.

Remember: A format specifier always begins with the symbol %

A Textbook of Computer Science 167 Class 12

e e ————— =

The following table shows how values are displayed using different format
specifiers.

| Valwe Format Displayed Va

-25.41 %6.2f -25.41

3.14159 %S5.2f [3.14 3.14159 %14.21‘ 314
3.14159 %3.2f 3.14 3.14159 %5.1f 003.1
3.14159 %S5.3f 3.142 3.14159 %8.5f [13.14159
6789 %42f - 0.69 0.007 %42f -0.01
-.007 %8.3f 0-0.007 -0.007 %8.5f -0.00700
-.007 %.3f -0.007 3.14159 %.4f -3.1416

10.1.3 Escape Sequences

Escape sequences are characters which are specified in the format
string of the printf statement in combination with a backslash (\). These cause
an escape from the normal interpretation of a string so that the next character
is recognized as having a special meaning. For example, consider the
following program

Remember: Escape sequence characters always begins with a backslash (\)

Write a program that will demonstrate the use of escape
seqquences.

Example 3

#include <stdio.h>

void main(void)
{
printf{”Name\t\tRoll_No\t\tHarks"};
pEIDEE (AR~ =mm— s msa eSS s S b -
printf (“\nAmir\t\t 78\t\t425");
printf (*\nTahir\t\t 23\t\t385");

Input/Output 168 Chaprer 10
"'——_;_-EEE-E‘HE e e

Here’s the output of the program

T RollNo - Marks
Amir s 425
Tahir 23 385

In the above program, we use two escape sequences. These are \t and \n. The
escape sequence \n causes the text to print from the start of the next line,
whereas \t inserts a tab space between two words. In addition to newline and
tab escape sequences; there are some others as well. Here is a list of them:

E St Piitpics
\n New Line
\t Tab
\b Backspace
\r Carriage Return (Enter Key)
\f Form feed
v Single Quote
\ Double Quote
W\ Backslash
\xdd ASCII code in hexadecimal notation (each d
represents a digit) -
\ddd ASCII code in octal notation (each d
represents a digit)

We have discussed the purpose of first two escape sequences. The escape
sequence \b causes the cursor to move one space left, the form-feed (\f) moves
to the next page on printer. It is important to note that one can not display a
single or double quote on the screen without using the escape sequences \' and
\". The reason is that the format string of the printf function is enclosed in a
double quote. When a double quote is specified in the format string, it is
treated as the closing double quote. That's why, single and double quotes are
always written with backslash. For example the statement

printf(“Escape Sequence is a \"Cool\” feature of C"

Here’s the output

Escape Sequence is a “Cool” feature of C.

A Textbook of ngurer Science 169 Class 12
10.2 SCANF FUNCTION

Most of the programs are interactive in nature. Till now, we did not learn a
way to write interactive programs. C is featured with a range of functions to accept
user input in variety of forms. The scanf (pronounced as scan-eff) function is versatile
as it is equally good for numeric as well as string input.

It takes as arguments a format string and a list of variables to hold the input
values. Here is the syntax of scanf function:

scanf{format string, &varl, &var2, &var3, ¥
Let us consider the following program to understand the working of scanf function:

Write a program to convert the distance in kilometers into
meters.

Example 4

#include <stdio.h>

void main(void)

{
double meter, kilometer;

// prompt the user to enter kilometers
printf (*Enter distance in kilometers >*);
// take input

scanf (*%1f”, &kilometer):

meter = kilometer * 1000;
printf(“\n%lf kilometers = %1f meters”,
kilometer, meter):

}
Here's the sample output of the program

In the above program, first line is the declaration of variables meter and
kilometer. The next executable statement is printf, which displays a message for the
user to enter distance in kilometers. The next is the scanf statement. When the
program reaches this line of code, the flow of execution stops until the user enters a
value. The format string of scanf is “%If” which tells the scanf what kind of data to
copy into variable kilometer. The format string of scanf consists of a list of format
specifiers only; no other value or text can be spaclﬁed in it.

Immmdnfmsvmmmbnmmaﬂnsmmfnqmnna&humaf&nuumﬂbhaﬂnm
‘the input value into it.

Input/Ouiput 170 Chapter 10
— — — — — ")

Notice that in the call to scanf, the name of variable kilometer is preceded by
an ampersand character (&). In C, & is actually the address of operator. In scanf, the
address of operator (&) tells the scanf funciton the address of the variable where the
input value is to store. If & is omitted, the scanf will not be able to locate the variable
in memory, hence it will be unable to store the value into the variable and the
program will find a garbage value in the variable.

number entered
kilometer 40.5

Fig. 10,1 Input value is stored in variable

10.3 CHARACTER INPUT

In C, there are many functions to accept character input. The versatile scanf
can also be used for this purpose. But scanf requires pressing the return key at the end
of input value. In some cases, it is desirable to input characters without pressing the
return key. For example, in a game while controlling the movement of a space ship
through arrow keys we can’t afford to press return key each time after pressing an
arrow key. To overcome such situations, C is equipped with many other functions
specialized for character input. gefch and getche are examples of such functions.
These are part of the conio (console input output) library.

10.3.1 getch and getche Functions
The getch and getche functions are very handy in character manipulation. In
« contrast to the getch function which does not echo the character typed, the
getche function echo the typed character. Both of these functions do not
accept any argument. However they return the typed character to the calling
function. One does not need to press the return key (ENTER key) after typing
the character. The moment a character is typed, it is imidiately returned by the
function to the calling module. .

Nmnmmachmmmmﬂwmspmﬁadwﬂhmsmghgmmm
e.g ‘a’, ‘@, 7, etc.

A Textbook of Computer Science 171 Class 12
e e ——— e ——

Example 5 Write a program that displays the ASCII code of the character
' typed by the user.

#include <stdio.h>
#include <conio.h>

void main()
{
char chi;

printf (*Please type a character :");

ch = getchel);

printf(“\nThe ASCII code for \/%c\' is ¥d", ch, ch);
}

Here's the ontput of the program

Please type a character :a
The ASCII code for ‘a’ is 97

Note it that, in this program we include a new header file conio.h. This file contains
the definition of functions getch() and getche(). In this program, the statement

ch = getche();
can be replaced with the statement
ch = getch();

In the later case, the typed character will not be shown on the screen and the output
will be as follows:

Please type a character :
The ASCII code for *a’ is 97

When the 3™ line of the program is executed, it waits for a character to be typed. As
soon as a character is typed, the very next line executes imidiately without waiting for
the return key to be typed. And the function getche() returns the typed character to the
main function, where it is assigned to the variable ch.

Input/Output 172 Chapter 10
Exercise 10c
1. Fill in the blanks:
(i) The function does not display characters on the
output screen.
(ii) is an input function.
(iii) %x is a format specifier for
(ivl Escape sequences always begins with a
(v) The printf function is defined in
(vi) The ASCII code for Escape key is .
(vil) The escape sequence represents the carriage return.
(vui) There are total columns on the output screen.
(ix} The symbol for address of operator is i
(x) \dddd is used to print ASCII code in notation.
2. Choose the correct option:
(1) The function getche() is defined in:
a) stdio.h h) string.h
<) math.h d) conio.h
{1} The escape sequence for backslash is:
) \ b) \b
c) W d)
(iii) The format specifier %u is used for:
a) integer b) unsigned short
c) unsigned float d) unsigned long int
L1V)
a) Arithmetic overflows h) Arithmetic underflow
c) Truncation d) Round off
(v) The symbol ‘=', represents:
i) Comparison operator b) Assignment operator
c) Equal-to operator d) None of these
(vi) Which of the following operators has lowest precedence?
a) ! b) +
c) = d) ==
(vii) Relational operators are used to:

(viii)

4) Establish a relationship among variables

b) Compare two values

¢) Construct compound condition

d) Perform arithmetic operations

C is a strongly typed language, this means that:

a) Every program must be compiled before execution

b) Every variable must be declared before it is being used
c) The variable declaration also defines the variable

A Textbook of Camﬁuter Science 173 Class 12

d) Sufficient data types are available to manipulate each type of data
(ix) The logical not operator, denoted by !, is a:

a) Ternary operator b) Uniary operator

c) Binary operator d) Bitwise operator
(x) a+=Dbisequivalent to:

a) b+=a b) a=+b

c) a=a+b d) b=b+a

3. Write T for true and F for false statement:
(i) printf and scanf are standard identifiers.
(i) InC language you must declare all variables before using them.
(iti) Standard data types are not predefined in C language.
{iv) The double data type required 4 bytes in memory.

4, What do we mean by standard input and output? Illustrate the use of printf{)
and scanf() functions.

5. Illustrate the difference between format specifiers and field-width specifiers
with examples.

6. Define the term ‘escape sequence’. List names and uses of any five escape
sequences.

a) Show the output displayed by the following program when the data
entered are 10 and 15.
#include =<stdio.h>
void main()
{
int-m, n; _
printf(*Enter two numbers (separated by
comma) ;") ;
goani (“%d 4%, m, 1);
m=m + 10;
B =5 *im;
printf{*m = %A\t\t\t n = %d\n", m, nj;

Input/Output 174 Chapter 10
e

b)

c)

b)

c)

10.

Show the contents of memory (for variables ‘a’ and ‘b') before and
after the execution of the above program.
Write the program in example 5 using scanf function.

Show how the value -17.246 would be printed uging the formats %8.4f,
9%8.3f, %8.2f, %8.1f, %8.0f, and %0.2f.

Assuming X (type double) is 21.335 and y (type int) is 200, show the
output of the following statements (on paper). For clarity, use the symbol
[to denote a blank space.

printf{*x dis %26.2E \t ¥ is %¥4d\n". % ¥):
printf(*y is %d\n", v);

printf{*x is %.1E\n", %);

If the variables a, b, and c are 307, 408.558 and -12.31, respectively, write
a statement tha twill display the following line: (for clarity, the symbol [J
shows a blank space)

0030700110408.560000-12.3

Write a program that asks the user to enter the radius of a circle and then
computes and displays the circle’s area. Use the formula
area = PI x radius x radius

where PI is the constant value of 3.14159. (Note: Define a constant macro PI
with #define directive)

Write a program that stores the values *A’, ‘U, 3.456E10 and 50 in separate
memory cells. Your program should get the first three values as input data, but
use an assignment statement to store the last value.

Write a program that converts a temperature in degrees Fahrenheit to degrees
Celsius. For conversion, use the following formula

celsius = 5/9 (fahrenheit - 32)
Write a program that takes a positive number with a fractional part and rounds

it to two decimal places. For example, 25.4851 would round to 25.49, and
62.4431 would round to 32.44,

