A Textbook of Computer Science 193 Class 12

Chapter
LOOP CONSTRUCTS 12

We often encounter problems whose solution may require executing a
statement or a set of statements repeatedly. In such situations, we need a structure
that would allow repeating a set of statements up to fixed number of times or until a
certain criterion is satisfied. In C, Loop statements fulfill this requirement. This
chapter will provide the basis for writing iterative solutions to certain problems. Here,
we shall introduce different loop constructs available in C.

Iteration is the third type of program control structure (sequence, selection,
iteration), and the repetition of statements in a program is called a loop. ~ There are
three loop control statements in C, these are:

while
do-while

for

The while loop keeps repeating associated statements until the specified
condition becomes false. This is useful where the programmer does not know in
advance how many times the loop will be traversed. The syntax of the while
statement is:

while (condition)
{

Statement(s);
!

The condition in the while loop controls the loop iteration. The statements,
which are executed when the given condition is true, form the body of the loop. If the
condition is frue, the body of the loop is executed. As soon as it becomes false, the
loop terminates immediately.

Loop Constructs 194 Chapter 12
e e e e S e e e e

Example 1 Write a program to print digits from 1 to 10.
#include <stdioc.h>

void main{void)

{
int count;
count = 1:
while(count <= 10)
{
printf(*%d\n*, count);
count = count + 1;
}
}

Fig. 12.1 Flowchart of the while loop

This is a simple program which demands iterative solution. It does not make
sense 10 use ten printf statements to print ten digits; if so, what if we have to print
digits from 1 to 10007 Should we write one thousand printf statements to accomplish
the task? Certainly not, the right way to come up to the solution is to use a loop, :
which would execute ten times. Each time the loop executes, a number is printed

A Textbook of Computer Science 195 Class 12 -

ﬁ

which is incremented by one for every iteration until the required list of numbers is
printed.

In this program, we use a variable count which is initialized to 1. The
condition (count <= 10) depends on the value of this variable. Until the condition is
true, the control will enter the body of the loop, and as soon as it becomes false, the
control will exit from the loop and will jump to the next statement to the body of the
loop. First time, when the condition is checked, it is found true as the value of count
which is one, is less than ten. The control enters the body of the loop and the number
“1” is printed. The next line of code increments the value of count by one, which
becomes “2”. After that, the control will immediately jump to the while statement
where again the condition is tested which is still found true, as 2 is less than 10. The
control again enters the body of the loop, and the number “2" is printed. The value of
the variable count again increases by one and becomes “3". The control again transfer
to the while statement. This process continues until the value of count becomes 5 1 14
making the condition false. When the condition becomes false, the control will exit -
from the loop. :

The count is the loop control variable. A variable whose value controls the
number of iterations is known as loop control variable. The compound statement,
which is enclosed in braces, is the body of the loop.

In while loop, the loop control variable is always initialized outside the body
of the loop and is incremented or decremented inside the loop body.

123 DO-WHILE LOOP
This is very similar to the while loop except that the test occurs a the end of

the loop body. This guarantees that the loop is executed at least once. This loop is
frequently used where data is to be read; the test then verifies the data, and loops back

to read again if it was unacceptable. The syntax of the do-while statement is:

do
{

statement(s);
ywhile (condition);

The important point about this loop is that unlike while loop, it ends with a
semicolon. Omitting the semicolon will cause a syntax error. Let us re-write the
program in example 1 using do-while loop.

#include <stdio.h>

void main(wvoid)

Loop Constructs - 196 Chaprer 12

{
int count;
count = 1;
do
{
printf(*%$d\n”, count);
count = count + 1;
} while(count <= 1Q);
}

f

Here, we achieve the same objective as in previous example but in a different way.
The keyword do let the program flow to move into the body of the loop without
checking any test condition. It means, whatever is written in the loop body always
will be executed at least once. At the completion of execution of the body of the loop,
the test condition is checked. If it is found true, the control is transferred to the first
statement in the body of the loop, and if the condition is evaluated to false, the loop
terminates immediately and the control moves to the very mext instruction outside the
loop.

The do-while loop is of great importance in situations where we need to
execute certain statements at least once.

Example 2 Your telephone connection may be in any of two states i.e.. -
working or dead. Write a program that reads the current state
of the telephone line; the user should enter w for working state
and d for dead state. Any input, other than w or d. will be
considered invalid. We want to force the user to enter a valid
input value. This could be achieved by using a do-while loop.
Let us consider the following program:

#include <stdio.h>

void main(void)
{
char state;
do

{

Mm@m—;—_—_—uﬂ——uﬂn e =i & {1_‘1-:'“"’ L2

printf (“\nPlease enter the current state
of the telephone line (enter \'w\’ for
working and \’'d\’ for dead) >");

scanf ("%c”, &kstate];

Iwhile (state != ‘w' && state != ‘d’);
}

This program demonstrates a scenario where an invalid input is not processed.
Until the user enters a valid input (d or w), the program repeatedly shows him (or her)
the message for the valid input to be entered.

Here, the key point is the correct understanding of the test condition (state !=
‘W' && state != ‘d’). It is a compound condition which is comprised of two sub
conditions i.e. state != ‘w" and state != ‘d’. It should be noted that if two or more
conditions are combined using logical AND operator to form a compound condition,
the compound condition will be true only if all the sub conditions are true and if any
of the sub conditions is false, the compound condition evaluates to false. Therefore,
when the user enters an invalid input (suppose e), the first sub condition state != ‘w’
evaluates to true (because e is not equal to w), similarly the second sub condition state
I= *d’ also evaluates to rrue. Since both the sub conditions are true, therefore the
compound condition also evaluates to true and the control flow returns back to the
printf statement in the body of the loop. This process continues until the user enters a
w or d. When the user enters a d or a w, one of the sub conditions evaluate to false
causing the compound condition to be evaluated to false and the control flow exit the
loop.

while vs do-while
" In while loop, the body of the loop may or may not execute depending on the

evaluation of the test condition.

In do-while loop, first the body of the loop is executed and then the test

condition is checked. Hence it always executed at least once.

The for statement is another way of implementing loops in C. Because of its
flexibility, most programmers prefer the for statement to implement loops. The syntax
of the for loop is as follows:

for (initialization expression; test condition; increment/decrement expression)

{
)

statement(s);

Constructs 198 Chapter 12

There are three expressions in for loop statement, these are
. Initialization of the loop control variable
. Test condition
. Change (increment or decrement) of the loop control variable

The initialization expression is executed in only the first iteration. Then the .
loop condition is tested. If it is true, the statements in the body of the loop are
executed. After execution of the body of the loop, the increment/decrement
expression is evaluated. It is very important to note that the initialization expression is -
only executed for the first iteration. For second and next iterations, the loop condition
is tested, if it is true then the body of the loop is executed and then the
increment/decrement expression is evaluated. After evaluation of the
increment/decrement expression, the test condition is checked again and if it is true
then the body of the loop executed. This process continues as long as the loop
condition is true. When this condition is found to be false, the for loop is terminated,
and the control transfers to the next statement following the for loop. Usually, we
increment or decrement the loop control variable in the increment/decrement
expression. Let us re-write the program in examplel using for loop.

#include <stdio.h>

volid main(void)
{
int count:
for (count = 1; count <= 10; count++)
printf(*%d\n", count);

}

There are three expressions in for loop statement, separated by semicolons.
Two of the expressions ie. initialization expression and increment/decrement
expression are optional. We may omit these expressions. In this case, the for
statement will be written as follows:

for™ {; counb == -T0;)

The loop condition is mandatory. This can not be omitted. In this case we
must have to initialize the loop control variable outside the for statement and it should
be incremented or decremented inside the loop body.

12.4 NESTED LOOP

Nested loop means a loop inside the body of another loop. Nesting can be
done up to any level. But, as the level of nesting increases, the complexity of the

:dere::Ibaok of Computer Science 199 Class 12
nested loop also increases. There is no restriction on the type of loops (while, do-
while, or for) that may be placed in the body of other loops. For example, we can

place one or more while or do-while loops in the body of for loop. Similarly, one or
more for loops can be placed in the body of while or do-while loop.

Write a program that will print asterisks (%) according to the

Example 3 . :
pattern shown in the fig. 12.2.
T
include <stdio.h> T LT
EEE £ 34
void main(void) - HkEE
{ -
int inner; *%

*
for (int outer=7; outer>=1l; outer--) Fig. 12.2 asterisks pattern

f
inner = 1;
while(inner <= outer)
{

printf (=) ;
inner++;

}
printf{"\n"};
1

In this program, a while loop is used inside the body of for loop, which shows
a nested loop. The outer loop is controlled by the loop control variable i.e., outer. The
outer loop is executed seven times. For each iteration of the outer loop, the inner loop
executes until the value of the inner loop control variable i.e, inner is less than or
equal to the value of the variable outer. It should be noted that each time a new
iteration for the outer loop starts, the variables used in the inner loop are re-initialized
and re-processed.

For the first iteration of the outer loop, the variable ‘outer’ is initialized to 7,
and in all next iterations it is decremented by 1. This process continues until the value
of the variable is greater than or equal to 1. For the first iteration of the outer loop, the
inner loop executes seven times, and for the 2™ iteration it executes six times,
similarly for the last seventh iteration, the inner loop executes just one time. Each

Loap Constructs 200 Chapter 12

time when the inner loop is terminated, the statement printf (*\n”)moves the
cursor to the start of the new line.

Note:

Many programs require a list of items to be entered by the user. Often, we
don’t know how many items the list will have. For example, to find the average marks
of a class, we have to input the marks of every student of the class. Similarly to
calculate the sum of a series, we have to input the list of numbers in the series. There
are so many other situations where the solution demands to enter a list of items to
process. Loops are very useful to develop solutions for such problems, Each time the
loop body is repeated, one or more data items are input. But, often we don’t know how
many data items will be input by the user. Therefore, we must find some way to signal
the program to stop reading and processing new data.

One way to do this is to instruct the user to enter a unique data value, called a
sentinel value, after the last data item. The loop condition tests each data item and
causes loop exit when the sentinel value is read. Choose the sentinel value carefully; it
must be a value that could not normally occur as data. The general form of a sentinel-
controlled loop is:

1. Get the first line of data

2. While the sentinel value has not been encountered
3. Process the data line

4. Get another line of data

Sentinel Value is an end marker that follows the last item in a list of items

Example 4

#include <stdio.h>

void main(void)

{
int sum = 0, marks, total_students = 0;
float average;

dof

printf ("Enter marks of the student {or any -ve
number to quit) =>");
scanf("%d", amarks):;

if (marks >= 0)

A _i"e:fbaa.k af Compure_v_'_&'fenm 201 Class 12

i!

total_students++;
sum += marks;
}
} while(marks >= 0);

if (total students > 0)

{
average = sum / (float)total_students;
printf("The average marks of the class are:
$f\n", average);

}

glse
printf("Please enter the marks of at least one
student to calculate average\n");

This program demonstrates a typical implementation of sentinel loop. Size of
the class does not matter, whatever it is, the average will be calculated in the same
way. Here any negative number may act as the sentinel value because no student can
have negative marks. However, zero would not be a wise option because there can be
a student with zero marks.

The program reads the marks until the user enters a negative number. For
cvery valid input (zero and +ve numbers) the control switches to the body of the
while loop. In the loop body, the total_students is incremented by one and the sum is
accumulated. As soon as a negative number is entered, the sentinel while loop is
terminated. The next line to the end of the while loop is an if statement, which checks
the count for total students ie., total_students to ensure that the marks of at least one
student have been entered. Omitting this if statement may crash the program. It is
because of the formula for calculating average where the sum is divided by
total_students. When marks of any students are not entered, the value of
total_students is zero and calculating average for zero students will result in a runtime
error of division by zero. So, to avoid this possible error first the value of the variable
total_students is cheked; if its greater than zero then the average is calculated
otherwise a message is shown to the user to enter the marks of at least one student.
Now, notice the average formula i.e.,

average = sum / (float)total_students;

We have used the keyword floar in parenthesis before the variable
total_students. The reason is that both the variables sum and rotal_students are
integers. So, their division will be integral division in which the fractional part is

Loog Constructs 202 E'Ei'er 12

truncated. Hence, the result will not be accurate. -Writing floaz in parenthesis ie.
(floar) before the integer variable name (i.e. total_students) causes the integer
variable to temporarily act as a float variable for this particular calculation. It is done
to preserve the fractional part in the result. The integer variable (fotal_students) will
act as an integer for all other calculations. The effect of this change is strictly
associated with that particular calculation, This phenomenon is known as rnype
casting.

12.5 GOTO STATEMENT

The goto statement performs an unconditional transfer of control to the name!
label. The label must be in the same function. A label is meaningful only to a got
statement; in any other context, the labeled statement is executed without regard
the label.

The general form of the goto statement is as follows:
goto label,

AErsERREEREESE

SElEsEREEREESE

label: statement

E le 5 Write a program to calculate the square root of a positive number.
Also handle negative numbers properly.

#include <math.h>
#include <stdic.h>

void main()

{

float num;

positive:
printf ("Please Enter a positive number: ");
scanf("%$f", &num);

if (num < 0)
goto positive;

else
printf ("Square root of %0.2f is %0.2f", num,
sqgrt (num)) ;

}

If the user enters a negative number, the control transfers to the label positive.

A Textbook of Computer Science 203 Class 12

M

Exercise 12¢

“1. Fill in the blanks:

(i) ;= There are types of loop in C.
(i) The loop condition controls the loop .
(iii) . In loop, first the body of the loop is executed and then
the test condition is checked.
(iv) means a loop within the body of another loop.
(v) The statement performs an unconditional transfer of
control to the named label.

(vi) = Repetition of statements in a program is called

| (vii) There are expressions in for loop statement.

| (viii) The body of the while loop executes only if the specified condition is
(ix)| Increase in the level of nesting increases the of the

" nested loop.
{3_;}_ A is meaningful only to a goto statement.
2. Write T for true and F for false statement. '

(i) | Thereisno difference between while and do-while loop.
(ii) ' The body of a while loop may or may not execute.
(iii) | The do-while loop always executes at least once.
(iv) | var++ is an example of prefix increment.
(v) The condition of an infinite loop never becomes true.
(vi) Initialization expression is optional in for loop.
(vidy | for(i = 1; i <=.104 i++) ; is an infinite loop.
{vijj}; Loop is a decision making construct.
(ix) A while loop can not be used in the body of a for loop.
(x) o In type casting, a variable of one type behaves as the variable of

. another type temporarily.

w"m. E’mei——m_!___m

Define a loop. How many loops are available in C? Compare the following
loops:

while loop and do-while loop

while loop and for loop

What is a sentinel controlled loop and how it is implemented? Discuss some
of the situations where it can be useful.

Write the output of the following program fragments:
(a) k=0;
while (k <= 5)
{
printf(*%3d %3d\n", k, 10 - k)
k++;
)
" Trace the output of the following piece of code.
j=10;
for (inti=1;i<=5; ++H)

{
printf(“%d %d\n”, i, j);

j=2

.
-y

}

Correct the following code segments according to the given instructions:

- Insert braces where they are needed and correct errors if any. The
corrected code should accept five integers and should display their
sum.
count = 0;
while (count <= 5);
count += 1;
printf(“Next Number >");
scanf (“%d”, &next_num);
next_num += sum;
printf(“%d numbers were added; \n", count);

printf(“Their sum is %d.\n", sum);

¥

A Texthook of Computer Science 205 Class 12

T - - TLEE T g e i T el T R ol

3 Rewrite the following code segment using a do-while statement
sum = (;

for (odd = 1; odd < n; odd = odd + 2)

~ sum = sum + odd;
printf(“Sum of the positive odd numbers less than %d is %d\n”, n,
sumy);

Trace the output of the following program segments, assuming mis 3 and n is 5:
for(k=1;k <=n; ++k)
{

for (j=0;j<k; ++j)
{
printf(**”);

)
printf(*\n”);

h) for (k = n; k> 0; --k)
{
for G=m;j>0:-))
{

}
printf(*\n");

printf(*“+”);

) () Re-write the program in example3 by replacing the inner while
loop with

. aforloop

. ado-while loop

(1yyRe-write the program in example3 by replacing the outer for loop
with

« awhile loop

« ado-while loop

Loop Constructs 206 Chapter 12
ﬁ

&

9. Write a program that inputs a number and displays the message “Prime
number” if it is a prime number, otherwise displays “Not a prime number”.

|0. Write a program that displays the first 15 even numbers.

|1, Write a program that inputs a number, and displays its table according to the
following format:

Suppose the number entered is 5, the output will be as follows:
5%1=5
§*¥2=10
§%3=15

5*%10=50

2. Write a program using do-while loop that repeatedly prompts for and takes
input until a value in the range O through 15 inclusive is input. The program
should add all the values before exiting the loop and displays their sum at the
end. '

i Write a program that produces the following output:

CoOo0oDO0 O

1
1
1
1
1

[S o T
W .

4
4 §

14 Write a program the produces the following output:

0 1
1 2
P 4
3 8
4 16
5 32
6 64

