A Textbook of Computer Science 207 Class 12
..”

13.1 OVERVIEW

The idea of modular programming is the result of inspiration from the
hardware manufacturing where replicable components of different items are
available. If a component of an item gets out of order, it is replaced with a newer one.
Many different components from different manufacturers can be combined together
to form a hardware device such as computers, cars, and washing machines. Functions
are the building blocks of C programs. They encapsulate pieces of code to perform
specific operations. Functions allow us to accomplish the similar kinds of tasks over
and over again without being forced to keep adding the same code into the program.
Functions perform tasks that may need to be repeated many times.

In programs we have seen so far, the whole program logic was contained in a
single main function. This style of writing programs is known as unstructured
programming. Recall chapter 8 where we have discussed the difference between
unstructured and structured programming. Here we shall discuss structured
programming approach. It is a modular way of writing programs. The whole program
logic is divided into number of smaller modules or functions. The main function calls
these functions where they are needed. A function is a self-contained piece of code
with a specific purpose.

main() main()
Function Calls

\)‘ \\t

f1

tured pmg;ramng approach Structured pmgm.tlnnﬁng- approach

Fig. 13.1 Difference between structured fnd instructured approaches

Functions in C 208 Chapter 13

The above figure demonstrates the idea of structured and " unstructured
programming.

IMPORTANCE OF FUNCTIONS

A program may have repetition of a piece of code at various places. Without
the ability to package a block of code into a single function, programs would end up
being much larger. But the real reason to have functions is to break up a program into
easily manageable chunks. The use of functions provides several benefits, Some of
them are:

They make programs significantly easier to understand and maintain, The
main program can consist of a series of function calls rather than countless
lines of code, , L

« Functions increase reusability of the code. Well written functions may be
reused in multiple programs. The C standard library is an example of the
reuse of functions.

Different programmers working on one large project can divide the
workload by writing different functions, hence ensuring the parallel
development of the software.

+ Functions can be executed as many times as necessary from different
places in the program

« When an error arises, rather than examining the whole program, the
infected function is debugged only.

i 3_]; - ‘;. :.‘:a_'-_n.-_; i i (] ~‘ .] ‘_i_"'- 5

There are two types of functions in C:

Built-in functions
User-defined functions

Built-in functions are predefined functions that provide us convenient ways to
perform variety of tasks. These functions are packaged in libraries. Through these
functions we can easily access complex programming functionality. We should not
reinvent the wheel. All that we need to do is just making a function call and the rest
of the task is performed by the called function.

We are familiar with some of the built-in functions, e. g., we have seen ctype
library and some of the functions defined in it, we have also been using pringf and
scanf functions throughout the book, which are defined in the library of standard
input/output, similarly we have also used gerch and getche functions which are
defined in the library of console input/output.

A Textbook of Computer Science 200 Class 12

#

Built-in functions are not sufficient for solving every kind of problem. A
programmer may need to write his/her own functions depending on the nature of
problem being solved. Such functions are called user-defined functions.

13.4 WRITING FUNCTIONS IN C

We are familiar with the main() function, which is the mandatory part of
every C program. In 8" chapter, we have introduced the structure of the main
function. Every function in C has almost the same basic structure. A function in C
consists of a furtction header which identifies the function followed by the body of
the function between curly braces containing the executable code for the function.
Every function in Cjs written according to the following general form:
returen_type FunctionName (parameter_list)

{ - .
Executable Statement (s)

return expression;

13.4.1 Function Header

The first line of function definition is called the function header ie.
return_type FunctionName (parameter_list)
It consists of three parts:

* The type of the return value
® The name of the function
* The parameters of the function enclosed in parentheses

The return_type can be any valid data type. If the function does not
return a value, the return type is specified by the keyword void. A function that has
no parameter specifies the keyword void as its parameter list. Hence, a function that
has no parameter and does nntretuman}rvaiucmﬂr:ca]]jngﬁmcﬂunwiﬂhawthe
header:

void FunctionName (wvoid)

Funetions in C 210 Chapter 13

However the keyword void is optional. The above function header for

function that has no argument can be re-written as follows: :

13.5

void FunctionName /()

13.4.2 The Funetion Body

Variables declaration and the program logic are implemented in the
function body. Function body makes use of the arguments passed to the
function. It is enclosed in curly braces. A function can be called in the body
of another function.

13.4.3 The return Statement

The return statement is used to specify the value retuned by a function.
The general form of return statement is:

return [expression];

When the return statement is executed, expression is evaluated and returned

“ as the value of the function. Execution of the function stops when the return

statement is executed, even if there are other statements still remaining in the
function body. If the type of the return value has been specified as void in the
function header then there is no need to use a return statement,

FUNCTION PROTOTYPE

The compiler must know functions used in the program. That's why we

include corresponding header files in the source program before using built-in
functions such as stdio.h and conio.h etc. A header file contains the prototypes of the
functions provided by the library. The compiler actually needs enough information to
be able to identify the function that we are using. A function prototype is a statement
that provides the basic information that the compiler needs to check and use a
function correctly. It specifies the parameters to be passed to the function, the
function name, and the type of the return value, The general form of the function
prototype is as follows: :

return_type FunctionName (parameter list);

We might be surprising at the above statement. It looks like the function header; yes it
is, but with a semicolon at the end.

A Textbook of Computer Science 211 Class 12

The prototype for a function which is called from another function must
appear before the function call statement. Functions prototypes are usually placed at
the beginning of the source file just before the function header of the main function.

13.6 CALLING A FUNCTION

Function call is a mechanism that is used to invoke a function to perform a -
specific task. A function call can be invoked at any point in the program. In C the
function name, the arguments required and the statement terminator (;) are specified
to invoke a function call.

When function call statement is executed, it transfers control to the function
that is called, The memory is allocated to variables declared in the function and then
the statements in the function body are executed. After the last statement in the
function is executed, control returns to the calling function.

13.7 LOCAL VARIABLES AND THEIR SCOPE

When the program executes, all variables are created in memory for a limited
time period. They come into existence from the place where they are declared and
then they are destroyed. The duration in which a variable exists in memory is called
lifetime of the variable.

Note: Operating system manages the allocation and de-allocation of memory for all
variables in wer programs, So, by destroying a variable we mean returning the
memory allocated to a variable back to the operating system for other programs.

The scope of a variable refers to the region of a -:pmgram in which it is
accessible. The name of a variable is only valid within its scope. So a variable can not
be referred outside its scope. Any attempt to do so will cause a compiler error.

All variables that we have declared so far have been declared within a block —
that is, within the extent of a pair of curly braces. These are called local variables and
have local scope. The scope of a local variable is from the point in the program where
it is declared until the end of the block containing its declaration.

Functions in C 212 Chapter 13
o S T © 7 o~ e s

Example 1

#include <stdio.h>
vold main()
{

int nCount 0;

if (nCount = 0}
{
int chk;

chk = 10;
}
printf{"sd", chk);
}

We have used two variables in this program; these are nCount, and chk. Both
of these are local variables. But, they have different scope. The scope of the variable
nCount is the block of main() function ie. from its point of declaration to the end of
the main() function. Whereas the scope of the variable chk is the block of if statement
i.e, from its point of declaration until the end of the block of if statement.

These variables can only be referenced within their respective scopes. Any
reference made to them outside of their scopes would be illegal, thus the program
causes the following compiler error.

‘chk’ : undeclared identifier

This is because in the last printf{) statement of the program, the variable chk is
referenced outside of if block ie., out of its scope, which is illegal. The lifetime of
local variables is the duration in which the program control remains in the block in
which they are declared. As soon as the control moves outside of their scope, these
variables are destroyed.

13.8 GLOBAL VARIABLES AND THEIR SCOPES

The variables which are declared outside all blocks i.e. outside the main() and
all other functions are called global variables and have global scope. They are
accessible from the point where they are declared until end of the file containing
them. It means they are visible throughout all the functions in the file, following their
point of declaration. The lifetime of global variable is until the termination of the
program. They exist in memory from the start to the end of the program.

A Texthook of Computer Science 213 Class 12
WM =

Note: It is very important to understand that every time the block of statements
containing a declaration for a local variable is executed, the variable is created anew,
and if we specify an initial value for the local variable, it will be reinitialized each time
it is created.

Example:

#include <stdic.h=
void main()
{

FHE r@ount== 1

clrseri);
While{nCount <= 10)
{ -
ik cehk = 10
printf ("%d\t", chk);

ehk = chk + il:
nCount++;

}

In this program, cach repetition of the loop prints the same value of the variable chk.
The addition to the value of chk will have no effect, because at the end of execution of
the body of the loop, the control moves outside the loop body (which is also the scope
of chk variable) and returns to the while statement; this causes the the chk variable to
be destroyed in each repetition. The ckk variable is again created in the next repetition
and gets destroyed at the end of the repetition. This process continues until the loop
condition is true. :

OQOutput: :
10 10 10 10 10 1 e (N | 10 10

Example 2

#include <stdio.h>
void Counter (void) ;
int nCount = 0;

void main()

{

Functions in C 214 ChﬂE-'f?r 13
E:_ - LAk

for (int n = 0; n <= 10; n+=2)
Counter{] ;

Printf(“nCount = %d*, nCount);
}
void Counter(void)
{

nCount++;

}

This is a simple program which demonstrates the use of global variable, Here,
we have declared a global variable i.e., nCount outside the main and the Counter
functions. This is mot contained in any block. The global variable nCount, the
function rmain, and the function Counter all are defined in the same file. Because, the
variable nCount is declared on top of the two functions, therefore it is visible within
them. The function Counter, increments the value of nCount by one each time it is
called. The main() executes a loop six times and call the function Counter to

increment the value of nCount. The value of the variable nCount is printed as the final
output of the program i.e.,

Output:

nCount = 6

Note: The point to be noted here is that the variable nCount is declared outside the
functions main() and Counter(), but they manipulate it as if it was declared within
them. Thenf;‘ﬂuntiscmatedmnmrybefnmmesmnofmﬁ@nﬂfthcmﬁn()and
exists until the execution of the program ends.

13.9 FUNCTIONS WITHOUT ARGUMENTS

The simplest type of function is one that returns no value and no arguments
are passed to them. The return type of such functions is void and the Parameter List
may either be empty or containing the keyword void. Lets consider the following
example.

A Texthook -::; Cuﬂer Science 215 Class 12

Example 3 Write a function named Print Asterisks that will print

asterisks (%) according to the pattern shown in the fig. 13.2.

and invoke a function call from the function main to print
the asterisks.

FEEEERE
$include <stdie.h> HhkEkE
i Hode gk
void Print Asterisks(void); //function *d®
// prototype o
void main(void) i
{ *
// Function call Fig, 13.2 asterisks pattern

Print_Asterisks();
1
void Print_Asterisks(void) //function header
{

int inner;

for{int outer=7; outer>=1l; outer--)

{
inner = 1;
while(inner <= outer)
{
printi("*");
inner++;
}
printf("\n");
}

We have discussed this program in the previous chapter, but here we have
followed a different approach. The next line to the #include directive is the prototype
for the function Print_Asterisks(). It tells the compiler about the function, its
return_type and number of parameters (void) in this case. Our main function consists
of just one line of code i.e.,

Print_Asterisks():;

It represents a function call to the function Print_Asterisks(). We can think of
a function as a worker who takes necessary steps to accomplish the task assigned to
him.

Functions in C 216 Chapter 13

Similarly, the function Print_Asterisks()is capable of printing
asterisks in a specific order. When the function call statement is executed, the control
is immediately transferred to the Print_Asterisks function. Memory is allocated to the
variables inner and outer. Then comes the for and while loops, which print asterisks.
When the task is completed, the control is transferred to the function main from the
function Print_Asterisks, and the n:lf:ﬁmry allocated to the variables inner and outer is
returned to the operating system again. Then, the control is transferred to the next
statement to the function call statement in the calling function i.e., main(). As there is
no statement in the main function other than the function call, so the program will
terminate.

13.10 FUNCTIONS THAT RETURN A VALUE AND ACCEPT
ARGUMENTS

So far, we have discussed simple functions that return no value to the calling
function. However, we may need a function that could return a value and arguments
could be passed to it. In previous chapters, we have seen a number of such built-in
functions e.g., sqrt(), toupper(), tolower() etc. Here, we shall learn to write these typcs-
of functions in C. Let’s consider the general form of function header:

return_type FundétionName (parameter_list)
The return_type specifies the data type of the value that the function returns.

Parameter_list is a coma separated list which specifies the data type and the name of
each parameter in the list.

#include <stdio.h>
int Add(int nl, int n2);
void maini()
{
: int a, b;
int sum;

clrscr(); f/clears the previous output
from //the screen

printf(%Enter values for ‘a’ and ‘b’ >");

scanf (#%4 %d4", &a, &b);

sum = aAdd{a, b):

A Texthook r;rg GﬂmEuIer Science 217 Class 12

printf(“%d + %d = %¥d", a, b, sum) ;
}
int Add(int nl, int n2)

{
return nl + nz;

}

Suppose the user enters 12 and 15 for @ and b respectively then the output of
the of the program will be:

12 + 15 = 27

The 7* line of code in the main function is a function call to the Add()
function, The Add() requires two parameters of type int to be passed to it. In the
function call, we have passed two variables ie., a and b of type int to the function.
These arguments (i.e., variables a and b) are called actual arguments or actual
parameters of the function. These are local variables and their scope is the body of
main function. Whereas the parameters specified in the function header (ie., nl and
n2) are called formal arguments or formal parameters of the function and their scope
is the body of Add function. These are also called dummy arguments.

When parameters are passed to a function, the value of actual parameters is
copied in the formal parameters of the functions. The function uses its formal
parameters for processing data passed to it. Any change made to the value of formal
parameters does not affect the value of actual parameters. Here, the values of @ and b
are copied in nl and n2 respectively. The function Add returns the sum of the two
values to the main function which is then assigned to the variable sum.

#include <stdio.h>
float Area_of_Triangle(int base, int altitude);
void main() |
{
int &; kg

float area;

printf("Enter value for altitude: il -

C

Functions in C . 218 haprer 13
%

scanf ("%d", &a):

printf("Enter value for base: ");
scanf("%d", &b);

area = Area_'of_Triangle{ar b) :

printf("Area of triangle is $.2f", area);

float Area_of_Triangle(int base, int altitude)
& '
return (0.5*base*altitude);

Output

Suppose the user enters 25 and 45 for altitude and base respectively, then the
output of the program will be:

Area of triangle ies 562.50

A Textbook of Computer Science 219 Class 12

Fil in the blanks:

(i) - A____ isaself contained piece of code.

(ii) ~ Pre-defined functions are packaged in

(i) A provide basic information about thf: function to
the compiler.

(iv) The duration for which a variable exists in memory is called its

(v) of a variable refers to the region of the program where it
can be referenced.

(vi) variables are declared outside all blocks.

(vii) A function can not return more than - value(s) through return
statement.

(viii) The parameters specified in the function header are called
parameter.

(ix) The parameters passed to a function in the function call are called

: parameters.
(x) Functions help to achieve programming.

Choose the correct option:
(i) Function prototypes for built-in functions are specified in:

a) source files 1) header files
object files) image files

(ii) Global variables are created in:

i) RAM) ROM

c) hard disk i} cache
(i) Which of the following is true about a function call?

a) Stops the execution of the program

b) Transfers control to the called function

¢) Transfers control to the main function

d) Resumes the execution of the program

(ivy Which of the following looks for the prototypes of functions used in a

program? -
a) linker . b) loader
c) compiler d) parser

Functions in C

220 Chapter 13

(v) Memory is allocated to a local variable at the time of its:
a) declaration b) destruction
c) definition d) first reference
(vi) The name of actual and formal parameters:
a) may or may not be same b) must be same
¢) must be different d) must be in lowercase
(viil) Formal arguments are also called:
a) actual arguments b) dummy arguments
c) original arguments d) referenced arguments
(viii) printf() is a:
a) built-in function b) user-defined function
) local function d) keyword
(ix) A built-in function:
- can not be redefined b) can be redefined
c) can mot return a value d) should be redefined
(x) ® InaC program, two functions can have:
4) same name
b) same parameters
¢) same name and same parameters
d) same name but different parameters
3 Write T for true and F for false statement.
(i) InC, arguments can be passed to a function only by value.
(ii) . There can be multiple main functions in a C program.
(i) A function can be called anywhere in the program.
(iv) InC, every function must return a value.
(v) A user-defined function can not be called in another user-defined
function.
(viv A function can be called only once in a program.
(viiy Scope of a local variable is the block in which it is defined.
(viiiy Global variables exist in memory till the execution of the program.
; (ix, An unstructured program is more difficult to debug than a structured
y program.
: (x. Function body is an optional part of the function.
4, What is a function? How many types of functions are usai in C? Discuss the

dlﬂ"e:rence between them.

A Tetbook of Computer Science 21 Class 12

Ly

Differentiate the following:

(1) Function Definition and Function Declaration

(ii) Global and Local variables

(iii) Scope and Lifetime of a variable

(iv) Function prototype and Function header

(v) Formal parameters and Actual parameters of a function

6. How is a function call made in a C program? Discuss briefly.

1. Answer the following:
(1) What is the purpose of a function argument?
(i1) How many (maximum) values can a function return using return
statement?

(i) When is a function executed, and where should a function prototype
and function definition appear in a source program?
(iv) Write three advantages of functions.

8. Write a program that call two functions Draw_Horizontal and Draw_Vertical
to construct a rectangle. Also write functions Draw_Horizontal to draw two
parallel horizontal lines, and the function Draw _Vertical to draw two parallel
vertical lines.

9. Write a program that prompts the user for the Cartesian coordinates of two
points (X1, ¥i) and (X3, y2) and displays the distance between them. To
compute the distance, write a function named Distance() with four input
parameters. The function Distance() uses the following distance formula to
compute the distance and return the result to the calling function:

J (x2—X1)" + (y2 - 1)

|0. Write a program that prompts the user to enter a number and then reverse it.
Write a function Reverse to reverse the number. For example, if the user
enters 2765, the function should reverse it so that it becomes 5672. The .
function should accept the number as an input parameter and return the
reversed number.

1. Write a function named Draw_Asterisks that will print asterisks (¥) according
to the pattern shown in the following and make a function call from the

function main to print the asterisks pattern.
sk o R

LS 2 bt
ek
gk

L

Functions in C 222 Chapter 13
m-—,ﬂm_—

Write a function Is_Prime that has an input parameter i.e num, and returns a
value of 1 if num is prime, otherwise returns a value of 0.

Write a complete C program that inputs two integers and then prompts the
user to enter his/her choice. If the user enters | the numbers are added, for the
choice of 2 the numbers are divided, for the choice of 3 the numbers are
multiplied, for the choice of 4 the numbers are divide (divide the larger
number by the smaller number, if the denominator is zero display an error
message), and for the choice of 5 the program should exit. Write four
functions Add(), Subtract(), Multiply() and Divide() to complete the task.

Write a program that prompts the user to enter a number and calls a function
Factorial() to compute its factorial. Write the function Factorial() that has one
input parameter and returns the factorial of the number passed to it.

Write a function GCD that has two input parameters and returns the greatest
common divisor of the two numbers passed to it. Write a complete C program
that inputs two numbers and call the function GCD to compute the greatest
common divisor of the numbers entered.

