A Texthook af Camemer Science 223 Class 12

Chapter - i

qmNe - 14

14.1 OVERVIEW

So far we have been writing programs to work with temporary data. The user
had to enter data each time the program was executed. All programs, we have seen in
previous chapters, were unable to store data and results permanently. The data is
stored on permanent storage in the form of files. A file is a set of related records.
Here, we shall explore the basic file handling features of C.

14.2 THE STREAM

Although C does not have any built-in method of performing file VO,
however the C standard library (stdio) contains a very rich set of /O functions
providing an efficient, powerful and flexible approach for file handling.

A very important concept in C is the stream. A stream is a logical interface to
a file. A stream is associated to a file using an open operation. A stream 1s
disassociated from a file using a close operation. There are two types of streams:

o Text Stream: A text stream is a sequence of characters. In a text stream,
certain character translations may occur (e.g., a newline may be converted to a
carriage return/line-feed pair). This means that there may not be a one-to-one
relationship between the characters written and those in the external device

» Binary Stream: A binary stream is a sequence of bytes with a one-to-one
correspondence to those on the external device (i.e., no translations occur). The
number of bytes written or read is the same as the number on the external
device. (However, an implementation-defined number of bytes may be
appended to a binary stream (e.g., to pad the information so that it fills a sector
on a disk). a

Note: In C, a file refers to a disk file, the screen, the keyboard, a port, a file on
tape, and so on.

14.3 NEWLINE AND EOF MARKER

A text file is a named collection of characters saved in secondary storage e.g.
on a disk. A text file has no fixed size. To mark the end of a text file, a special end-of-

File Hﬂndfﬁ inC \ 224 Chapter 14

file character is placed after the last character in the file (denoted by EOF in C).
When we create a text file using a text editor such as notepad, pressing the ENTER
key causes a newline character (denoted by \n in C) to be placed at the end of each
line, and an EOF marker is placed at the end of the file. For example, consider the
organization of text in a text file in the following figure; There are four lines of text,
each ends with a newline character i.e.,\n except the last one which ends with an end
of file marker i.e., EOF.

ofvlel |Plafklifs [t]aln]\n
m| |a s [t lujd|e |n|t |)n
o|r |k| |hla|r}d|n]| |
All|l]lalh bl |e|s|s uls | EOF

K Fig. 14.1 Organization of text in a text file
14.3 OPENING A FILE

Before reading from or writing to a file, it must be opened. All standard file
handling functions of C are declared in stdio.h. Thus it is included in almost every
program. To open a file and associate it with a stream, the fopen() function is used. Its
prototype is shown here:

FILE* fopen(const char* filename, const char* mode);

The fopen() function takes two parameters. The first is the name of the file. If
the file is not in the current directory then its absolute path is be given. In this case,
we need to escape the backslashes (i.e.,use \\ instead of \) in the absolute path. For
example:

fopen("c:\\Program Files\MyApplication\\test.txt", "r");

The second parameter of fopen() function is the open "mode”. It needs to be a
string — not just a character. (Use double quotes, not single quotes). The "r" means we
wish to open the file for reading (input). We could use a "w" if we wanted to open the
file for writing (output).

The fopen() function returns the NULL pointer if it fails to open the file for
some reason. The most common reason for fopen() to fail is that the file does not

A Textbook ni Camgu:er Science 225 Class 12

exist. There are, however, other reasons for failure so don't assume that is what went
wrong for certain. For example:

FILE *fp;
if ((fp = fopen("myfile", "r")) == NULL)
{
printf ("Error opening file\n");
exit{l):

}

14.4.1 File Opening Modes
A file can be opened in any of the following modes:

r | Open a text file for reading. The file must already exist.

W | Open a text file for writing. If the file already exists its contents
are overwritten. If it does not exist, it will be created.

A | Open a text file for append. Data is added to the end of the
existing file. If the file does not exist, it is created.

R+ Open a text file for both reading and writing. The file must
already exist.

W+ | Open a text file for reading and writing and its contents are
overwritten. If the file does not exist, it is created.

A+ | Open a text file for both reading and appending. If the file does
not exist, it is created for both reading and writing.

14.4.2 The File Pointer

A file pointer is a variable of type FILE that is defined in stdio.h, To
obtain a file pointer variable, a statement like the following is used:

FILE* fp;

We know the symbol **' as the arithmetic multiplication operator. But,
it has entirely different meaning when used with a data type such as int,
double, or FILE. It represents a pointer to the variable of type with which it is
used e.g. int* represents a pointer to an integer, float* represents a pointer to a
float variable, and FILE* represents a pointer to a variable of type FILE.
Conceptually, a pointer is a memory cell whose content is the address of
another memory cell.

226 Chapter 14

var

S PFFF

Fig. 14.1 Understanding the Pointer

Consider the following program that demonstrates the use of
pointers.

#include <stdio.h>
#include <conio.h>

void main(void)

{

int* wvar;
int num = 25;

clrscr();

var = #

printf (*Address of variable num is %x*, &num);
printf(“\nContents (i.e. walue) of num is %d4d-,
num) ;

printf (*\nAddress of memory location pointed to
by var is %x*, var);

printf (“\nContents of memory pointed to by var
is $d”, *var):

}

A Textbook of Computer Science 227 % ﬁ

It is clear from the program that a pointer type variable stores the address of a
memory location containing the value, not the value itself. The address of the
variable num i.e., fff4 may be different when you would execute this program
on your computer. This is because a different memory location may be
assigned to the variable num each time the program is executed.

14.5 CLOSING A FILE

When a program has no further use of a file, it should close it with fclose()
library function. The syntax of fclsoe() is as follows:

int fclose(FILE* fp)

The fclose() function closes the file associated with £p, which must be a valid
file pointer previously obtained using fopen(), and disassociates the stream from the
file. It also destroys structure that was created to store information about file. The
felose() function returns 0 if successful and EOF (end of file) if an error occurs.

146 READING AND WRITING CHARACTERS TO A FILE

Once a file has been opened, depending upon its opening mode, a character
can be read from or written to it by using the following two functions.

int getc(FILE* fp)
int putc{int ch, FILE* fp)

The gete() function reads the next character from the file and returns it as an
integer and if error occurs returns EOF. The getc() function also returns EOF when
the end of file is encountered.

The putc() function writes the character stored in the variable ch to the file
associated with fp as an unsigned char. Although ch is defined as an int yet we may
use a char instead. The pute() function returns the character written if successful or
EOF if an error occurs. '

s

File Handling in C 228 Chapter 14

_ Write a program that reads a file and then writes its
contents to another file.

#include <stdio.h>

void main(wvoid)
{
FILE *input:;
FILE *output:
int ch;

/! Try to open the input file. If it fails, print a
// message.

if ((input = fopen("afile.txt", *"rv)) == NULL)

{

printf("Can't open afile.txt for reading!\n");
}

// Now try to open the cutput file. If it fails,
// elose the input.

else if ((output = fopen("bfile.txt*, *w")) ==
NULL)
{
printf("Can't open bfile.txt for writing!\n");
fclose (input) ;
}

// 1f the files opened successfully, loop over the
// input one character at a time.
else

{
while ((ch = gete(input)) != EOF)
{
/{ Process ch and output it.
pute(ch, output);
}

// Close the files
fclose(input);
fclose[cutput];

A Texthook of CamEurer Science 229 Class 12

Output: This program copies the contents of afile.txt to bfile.txt, both files
are in current directory (i.e. the directory in which this .c file resides). The
following figure shows the output of the program:

& bliletut - Motepad

e EOR Fumet b | fle Bt Fomak bep
A one-dimensional array is used whentis =4| | A one-dimensional array is used when it is j:i
necessary to keep a large nurnber of tems m necessary to keep a large number of tems
memory and reference all the stems n m memory and reference all the items m
vriform manner. In C, all tlements of an vaforr manner. In ©, all elements of an
array have the same fixed, predetermined array have the same fixed, predetenmmed
size, and all have same data type. size, and all have same data type.

- 2

Fig. 14.2 Afile.txt is copied to bfile.txt by the program

14.7 STRING HANDLING

Until now, we have not discussed the topic of string handling. This book will
remain incomplete without having a discussion on strings. In most of the programs
we have to work with strings. For example, we may want to keep a list of names and
telephone numbers of our friends, a shopkeeper may need to prepare records of items
and their prices in his shop, and a law-enforcement agency might be intcrested in
keeping records of criminals including their names, pictures, telephone numbers and
addresses: in all of these cases we need to handle strings. So, in this section we shall
see how strings are handled in a C program.

In different programs, we have been displaying strings on screen with printf{)
function. But still we are not familiar with string variables — the way C stores a string
in a variable. Unlike variables of different numeric data types, C follows a different
approach to handle strings. It stores a string as an array of characters. An array is a
group of contiguous memory locations, which can store data of the same data type.
Let us see how we can declare an array in C? The general form is:

data_type arr_name[n];

The data_type specify the type of data that is stored in every memory location
of the array, arr_name describe the array name, and ‘n’ is the subscript of array
which shows the total number of memory locations in the array. For example, the
statements:

int balls[6];
double temperature[10];

File Handling in C 230 Chapter 14
m

define two arrays named balls and remperature (two sets of six and ten contiguous
memory locations as shown below). In balls we can store six integer values, whereas
in temperature we can store ten floating point values. Each value of array can be
accessed via its subscripts. For example, consider the following statements:

balls[0] = 4; temperature[0] = 37,
balls[1] =0; temperature[2] = 26;
balls[4] = 6; temperature[3] = 19;

S
balls[6] le:mperatmt{ I{.'l]

Now we have prepared a base for understanding string manipulation in C. As
strings are array of characters in C, that’s why it was necessary to have a concept of
arrays. We shall not prolong our discussion on arrays as it is out of scope of this
book. You will study more about this topic in next classes. However, here we shall
briefly discus strings — the array of characters.

14.7.1 Declaring and Initializing String Variables

As we mentioned earlier, a string in C is implemented as an array. So
declaring a string variable is the same as declaring an array of type char,
such as:

char name[16];

the variable name can hold string from 0 to 15 characters long. The last
character of every string in Cis *\ 0, the null terminator which indicates the
end of the string. In this way the C let us manipulate each character of the
string individually. Like variables of other data types, the strings can also be
initialized:

char name[16] = “Lahore™;
F

O 1 2 B [5 [F 7 & 8 10 # 1213 14 18
[Lifalblof e Fe Dol [oTEl oSl]

Notice the above figure showing the memory arrangement for the string
variable name; the name[6] contains the character *\0‘. This is the null
character that marks the end of the string. This end marker allows the strings
to have variable lengths. The rest of the memory locations in the array remains
empty and are not allocated to any other variables. All of the C’s string

A Textbook of Comﬁu:er Science 231 Class 12

handling functions simply ignore whatever is stored in the cells following the
null character. The following figure shows another string, longer than the
previous, that the variable name can store.

char name[16] = “T love Pakistan™;

ol [1] [2 3 @ 5 (6 7 8 9 10 11 12 13 14 15
O] Tilolvle] [PJa]k[ils[t[a[n]\0]

Notice that, in the initialization statement of the string we did not put a null
character (\0) at the end. When we initialize a string, a null character is added
at the end of it by default.

14.7.2 String Assignment

Assigning a value to a string variable is not as simple as assignment to
other variables. For example, we can assign an integer value to a variable of
type int and a floating point value to a variable of type float by using
assignment operator (i.e., =). But, it does not work with strings. So the
following statement will cause an error:

name = “I love Pakistan™;

As name does not consist of a single memory location — it is an array. So,
different characters are put in different memory locations of the array. This is
done by copying every character of the string to respective index (subscript)
of the array. For this purpose C provide a library for handling string
manipulation ie., library of string.h. Most of the string manipulation functions
of C are part of this library. There is a function named strcpy which is used to
copy a string to an array of characters (i.e., string variable). The syntax of
strepy is as follows:

char* strcpy(char* dest, const char* source):

Hence, the following statement will successfully copy the string to the
variable name.

strcpy (name, “I love Pakistan”);

148 STRING HANDLING IN TEXT FILES

When working with text files, C provides four functions which make file
operations easier. The first two are called fputs() and fgets(), which write or read a

File Handling in C 232 . Chapter 14
—————————————————————————

string from a file, respectively. Their prototypes are:

int fputs(char *str, FILE *p)
char *fgets(char *str, int num, FILE *fp)

The fpurs() function writes the string pointed to by str to the file associated
with fp. It returns EOF if an error occurs and a non-negative value if successful. The
null that terminates str is not written and it does not automatically append a carriage
return/linefeed sequence.

The fgets() function reads string of characters from the file associated with fp

into a string pointed to by str until num-1 characters have been read. a new line
character (\n) is encountered, or the end of file (EOF) is encountered. The function
returns str if successful and a null pointer if an error occurs.

Example3 Write a program that accepts name and telephone numbers of
your friends and write them in a file,

#include <stdio.h>
#include <string.hs>

void main(void)
{
FILE *ptrFile;
char name[30]:
char tel[11];
if ((ptrFile = fopen("d:\\Contacts.txt", "w"}) ==
NULL)
{
printf("Can't open bfile.txt for writing!\n"):
}
// 1f the file opened successfully, Get the name
// and telephone number and store them in the file
elge
{
do
{
printf("Enter the name(or press ENTER to quit):
il
gets (name) ;
if (strlen(name) > 0)

{

A Textbhook of Computer Science 233 Class 12
B e o S

printf ("Enter telephone number (max 10
characters): ");
gets(tel);
// write name and telephone number to file
fputs(name, ptrFile);
fputs("!", ptrFile);
fputs(tel, ptrFile);
fputs("\n", ptrFile);
}

}while(strlen(name} > 0);

// Close the files.

fclose (ptrFile) ;

This program demonstrates the typical use of strings in text files. A sentinel
loop reads name and telephone numbers unless the user enters an empty string for the
name. In addition to feets() and fputs(), this program makes use of a new string
handling function i.e., gets(). The gets function accepts a string from keyboard and

assigned it to the variable tel (an array of characters). The contents of the file
contacts.txt are as follows:

| & contacts

famir 18547348
fnasir! 7833129

aslam Hameed!2206301
Hammad Rehan!S214578

Fig. 14.3 Contents of Contacts.txt

Here an exclamation sign (!) separates the name and the telephone number
fields in each record. We may use another symbol such as a colon (:), as a separator.
In text files, a separator is used to mark the end of the data for one filed, whereas the
data for the next field follow this separator.

File Handling in C 234 Chapter 14

= J. Write a program that will read the contacts.txt file, and
“ displays its contents on the screen.

#include <stdio.h>
#include <conio.h>

void main(veid)

{
FILE* ptrFile;
char ch;
int line = 3;
clrscr():

if{{ptrFile = fopen("d:\\contacts.txt", "r")) ==
NULL)
printf("can not open file");
else
{
printf ("Name") ;
gotoxy(35,1);
printf ("Phone#\n");
printf("——--mmm e \n") ;
while ((ch = getc(ptrFile)) != EOF)
{
if {ch == *'1')
gotoxy (35, line);
else if (ch == '\n’')
gotoxy(l, ++line);
else
printE (*$c", ¢ch);
}
}
fclose(ptrFile);
getch();

The function gotoxy() moves the cursor to a specified location on the screen.
To use this function, the conio.h file must be included in the program. Its syntax is:

gotoxy(int col, int row)

The arguments of the gotoxy() function specify the coordinates of the screen
where the cursor should move to.

The process of appending a file is same as that of writing a file, just open
the file in append mode. Consider the following example:

_ Writeapmgmmthatmnappendrecurdalnmmmntﬁ]t.

#include <stdio.h>
#include <string.h>

void main{void)
{
FILE *ptrFile;
char name[30];
char tel[ll];
if ((ptrFile = fopen("d:\\Contacts.txt", "a")) ==
NULL)
{
printf("Can't open bfile.txt for writing!\n");
} .
// If the file opened successfully, get the name
// and telephone number and append them in the file

else
{
do
{

printf ("Enter the name({or press ENTER to qui_t}:
gt B

gets (name) ;

File Handling in C 236 Chaprer 14

m

if (strlen(name) > 0)
{
printf ("Enter telephone number (max 10
characters): ");
gets(tel);
// write name and telephone number to file
fputs(name, ptrFile);
fputs("!",ptrFile);
fputs(tel, ptrFile):
fputs("\n", ptrFile);
}
}while(strlen(name) > 0);
// Close the files.
fclose(ptrFile):;
} r

This program seems very much similar to the program in example3 except
that it opens contacts.txt in append mode, so new records are added at the end of the
contacts.txt file. The following figure shows the contents of contacts.txt after
appending three records:

| & contacts.TXT - Notepad =101 x|
amur| 8547348
nasir| 7833125
aslam Hameed! 2206301
Hammad Rehan!5214578 4
Shoukat!9208754 3
Abdullah|92035647 —
4 ZahdIB745617 =

Fig. 14.4 Contents of Contacts.txt after adding three more records

149 FORMATTED I/O

The other two file handling functions to be covered are Jprintf() and fscanf().
These functions operate exactly like pringf{) and scanf() except that they work with
files. Their prototypes are:

int fprintf(FILE *fp, char *control-string, ...)
int fscanf(FILE *fp, char *control-string ...)

A Textbook of Computer Science 237 Class |

Instead of directing their I/O operations to the console, these functions operate
on the file specified by fp. Otherwise their operations are the same as their console-
based relatives. The advantages to fprintfl) and fscanf() is that they make it very easy
to write a wide variety of data to a file using a text format.

Example3 can be re-written using formatted I/O as follows:

#include <stdio.h>
#include <string.h>
vold main(void)
{
FILE *ptrFile;
char name[30];
char tel[ll];

if ((ptrFile = fopen("d:\\contacts.txt", Mgt} ==
NULL)
{
printf("Can't open bfile.txt for writing!\n");
}
// If the file opened successfully, Get the name
// and telephone number and store them in the file
else
{
do
{
printf ("Enter the name(or press ENTER toO Uit er |
gets (name) ;
if (strlen(name) .> 0)
{
printf ("Enter telephone number (max 10
characters): ");
gets(tel);
// write name and telephone number to file
fprintf (ptrFile, "%s!%s\n", name, tel);
}
}while(strlen(name) > 0);
// Close the file.
fclose(ptrFile);
}

File Handling in C 238 Chapter 14
.- = -~ [- . Ty

. Fill in the blanks:
(i)
(ii)
(ii)
(iv)

)
(vi)

(vii)
(viii)
(ix)
(x)

A can store text only.

EQF stands for .

The function is used to open a file.

An opened file must be before terminating the
program.

A file opened in mode can be read and appended.

A file pointer is a variable of type

A pointer is a memory location whose contents pmnts to

memory location.

In C, every valid string ends with a

A string is an : of characters.

The fopen() returns a , if it fails to open a file for some
reason.

2. Choose the correct option:

(1)

(ii)

(iii)

(iv)

(v)

A file is stored in:

a) RAM b) hard disk

c) ROM d) cache

Which of the following mode open only an existing file for both
reading and writing:

a) “w" b) “w+”

c) l-ir+'li d:l l.ia+!!

Which of the following functions is used to write a string to a file?

a) puts() b) pute()

c) fputs() _ . d) fgets()

On successfully closing a file, the fclose() returns:

a) NULL b) 0 (zero)

c) 1 (one) d) FILE pointer
An array subscript should be:

a) int b) float

c) double d) an array

A Textbook a: ComﬁrerScfence 239 Class 12

3. Write T for true and F for false statement.
(i) A picture can not be stored in a text file.
(ii) EOF marks the end of a string.
(iii) A null character marks the end of a text file.
(iv) Text files are stored in a FILE* (file pointer).
(v) The name of the array points to its first element.
(vi) Array subscript is used to access array elements.
(vii) An array of characters can store data of any data type.
(viii) A binary file is a group of contiguous memory locations.
(ix) C can handle text files only.
(x) When an existing file is opened in “w” mode, its contents are over-

written.
4. Can a file be used for both input and output by the same program?
5. What is a stream? Illustrate the difference between text and binary streams.
6. How many modes are there for opening a file in C? Discuss characteristics
of different file opening modes.
7 What is a file pointer? Briefly explain the concept.
8. Write a program to merge the contents of two text files.
9. Write a program that counts the total number of characters in a text file.

[Note: consider the blank space a character]

10. Write a program that counts the number of words in a text files and display
the count on the screen.

