Students Learning Outcomes

After completing this unit students will be able to
B Explainthe concept and types of functions
B Explainthe advantages of using functions
B Explain the signature of function (Name, Arguments, Return type) \k~
B Explain the following terms related to functions
o Definition of a function O

o Useofafunction ‘\,\0
&Q’+

ComputerScience-X Unit5: Functions

Unit Introduction

A good problem solving approach is to divide the problem into multiple smaller
parts or sub-problems. Solution of the whole problem thus consists of solving
the sub-problems one by one, and then integrating all the solutions. In this way,
it becomes easier for us to focus on a single smaller problem at a time, instead of
thinking about the whole problem all the time. This problem solving approach is
called divide and conquer. C programming language provides us with functions
that allow us to solve a programming problem using the divid%a.nd conquer
approach. In this chapter, we will learn the concept cb@nctions, their

O

advantages, and how to work with them.

5.1 Functions Q)+

Afunction is a block of statements which perfo particular task, e.qg. printfis a
function that is used to display anything mputer screen, scanf is another
function that is used to take input fr user. Each program has a main

function which performs the tasks ES@rammed by the user. Similarly, we can
write other functions and use thepa multiple times.

5.1.1 Types of Functio O

There are basically two t of functions:
1) Built-inFuncti $
2) User Defi &nctions

Built-in Furﬁns

The functions which are available in C Standard Library are called built-in
functions. These functions perform commonly used mathematical calculations,
string operations, input/output operations etc. For example, printf and scanf are
built-in functions.

User Defined Functions

The functions which are defined by a programmer are called user-defined
functions. In this chapter we will learn how to write user defined functions.

Computer Science-X Unit5: Functions

5.1.2 Advantages of Functions
Functions provide us several advantages.

1) Reusability: Functions provide reusability of code. It means that whenever
we need to use the functionality provided by the function, we just call the

function. We do not need to write the same set of statements again and again.

2) Separation of tasks: Functions allow us to separate the code of one task
from the code of other tasks. If we have a problem in one function, then we do
not need to check the whole program for removing the problé}NVejust need
to focus at one single function. O

3) Handling the complexity of the problem: If we wge the whole program
as a single procedure, management of the& am becomes difficult.

Functions divide the program into sm@mts and thus reduce the
complexity of the problem.

4) Readability: Dividing the pro%ﬁmto multiple functions, improves the
readability of the program.
5.1.3 Signature of a Functi

A function is a block of s ents that gets some inputs and provides some
output. Inputs of a fun i are called parameters of the function, and output of
the function is caLL%its return value. A function can have multiple parameters,
but it cannot returh

Function sighature is used to define the inputs and output of a function. The

more than one values.

general structure of a function signature is as follows:
4 A

function identifier
|

return_type'function_namé(data_typei, data_type2,...,data_typeN);
|

data types of
function parameters

data type of

return value

Computer Science-X

Unit5: Functions

Example Function Signatures:
Table 5.1 shows the descriptions of some functions and their signatures.

Function Description

Function Signature

A function that takes an integer as
input and returns its square.

int square (int);

A function that takes length and
width of a rectangle as input and
returns the perimeter of the
rectangle.

float perimeter (float, float);

o

A function that takes three integers
as input and returns the largest
value among them.

int largest (i@\{nt, int);

&Q)

A function that takes radius of a
circle as input and returns the area
of circle. <

£

flo&%ea (float);

?C)

A function that takes a charact
input and returns 1, if the character

int isVowel (char);

is a vowel, otherwise retm@.
-~

The functi

Table 5

5.1.4 Defining }\ction
ure does not descri

assigned to"it Function definition do

following general structure.

Body of the function

@"G?me functions and their Signatures

be how the function performs the task
es that. A function definition has the

return_type function_name (data_type varl, data_type varZ2,.., data_type varN)

ComputerScience-X Unit5: Functions

Body of the function is the set of statements which are executed in the function to
perform the specified task. Just after the function's signature, the set of
statements enclosed inside {} form the body of the function.

Following example defines a function showPangram() that does not take any
input and does not return anything, but displays A quick brown fox jumps over the
lazy dog. on computer screen.

void showPap\gr‘am()

{ |function name|

printf(“\nA quick brown fox jumps,\"@ler' the 1lazy
dog.\n”);

) -\

5 Va

As the above function does not return anyt@!hus return type of the function is
void.

Let's take another example of a function that takes as input two integers and
returns the sum of both integers.Q

<[> EXAMPLE CODE 5.2 '\0 5
int add(int x, i

L/
= I’parameters of function |

int r‘éﬁat; \return type
el =+ y;

return result;

| function name

}

e

Inside the function, returnis a keyword that is used to return a value to the calling
function.
Important Note:
A function cannot return more than one values. e.g the following
statement results in a compiler error.
return (4, 5);

Computer Science-X Unit5: Functions

Important Note:

There may be multiple return statements in a function but as soon as the
first return statement is executed, the function call returns and further

statements in the body of function are not executed.
Using a Function
We need to call a function, so that it performs the programmed task. Following is
the general structure used to make a function call. \&
0

function_name(valuel, value2,.., valueN

Forexample, let's observe the following program. \‘9
o o

X
void main() @
{ A

printf(“Hello from main%(i)

[showPangram() ;le—— [gudGtion call]
printf(“Welcome back@main()”);

} &
Output: . 0

Hello from mai:&e}%

A quick brown jumps over the lazy dog.

Welcome bac main
\ B main() :

A\]
h—d
We can see that the program starts its execution from main() function. When it

encounters a function call (inside the rectangle), it transfers the control to called
function. After executing the statements of called function, the control is
transferred back to the calling function, i.e. main() in the above example.

The following program inputs two numbers and displays their sum.

The statement inside the rectangle in the following code includes a call to the add

function defined in previous section.

Computer Science-X Unit5: Functions

<[> EXAMPLE CODE 5.4

void main ()
{
int hly 2y sUm;
scanf ("%d%d", &1, &n2);[function name]
sum ={add (n1, n2);|< | function call|

printf ("Sum is %d", sum); |[function arguments]

\} &
In the function call n7 and n2 are arguments to the func{ie@ddo discussed in

Example5.2. :\-\

Variable sumis declared to store the result retur rom the function add/().

The variables passed as arguments are<ered by the function. The
function makes a copy of the variabl all the modifications are made to

that copy only. \

In the above example when n r@nZ are passed, the function makes copies

of these variables. The var?é@x is the copy of n7 and the variable y is the copy
of n2.

A2
Important Note:

The value géd to the function are called arguments, whereas variables
in the function definition that receive these values are called parameters
of the function.

In the above example, values of variables n7 and n2 are arguments to the
function add(), whereas the variables x and y inside function add() are

parameters of the function.

ComputerScience-X

Important Note:

Unit5: Functions

It is not necessary to pass the variables with same names to the function

as the names of the parameters. However, we can also use same names.

Here another important point is that even if we use same names, still the

variables used in the function are a copy of the original variables. This is

illustrated here through following example:

3

#include<stdio.h> O
void fun(int x, inty) ~‘S.0
&Q)
{
X = 20; &Q)

y = 16; QC)

printf(“vValues of x 6\/ in fun(): %d %d”, x, y);
} . OQ

void main()

AQ’

{

int xb@, y = 20;

funldx5y)

printf(“Values of x and y in main(): %d %d”, x, y);
}
Output:

Values of x and y in fun(): 20 10

kValues of xand y inmain(): 10 20

Unit5: Functions

Computer Science-X

Important Note:

Following points must be kept in mind for the arrangement of
functionsin a program.
1- If the definition of called function appears before the definition of

calling function, then function signature is not required.

2- Ifthe definition of called function appears after the definition of calling
function, then function signature of called function must be written

before the definition of calling function. o
Both the following code structures are valid. O
S N
a) int add(int, int); b) int add(in%‘\)int b)
void main() { <
i @tu na+b;
printf(*’%d *add(4, 5)); é
} void main
: , . Q <
int add(int a, int b) g\ {
{ O printf(”%d “add(4, 5)
return a + b; OQ I
. &

(2] PROGRAMMING TIME 5.1

(/
Proble@
Write a function isPrime() that takes a number as input and returns 1 if the
input number is prime, otherwise returns 0. Use this function in main().
Program:
#include <stdio.h>
int prime (int n)

{
for (inti=2;1i<n; i++)
if{n% i==9)
return @;
return 1;
}

ComputerScience-X

Unit5: Functions

void nain()
{
int 53
printf ("Please enter a number: ");
scanf ("%d", &x);
if(prime(x))
printf ("%d is a Prime Number",x);
else " |
printf ("%d is not a Prime Number", x) O
} \Oo
\ ~\’-:\.
E PROGRAMMING TIME 5.2 /\Q/’
Problem: Q)
Write a function which takes a positive @ber asinputand returns the sum
of numbers from 0 to that number.
Program: Q
int digitsSum(int n)
(N
int sum = O
for(int i —&\%< n; i++)
{
\'@l =sum+ i;
n sum;
;
void main()
{
int number;
printf("Please enter a positive number: ");
scanf("%d", &number);

ComputerScience-X Unit5: Functions

if(number >= 0)

{

int sum = digitsSum(number);

printf("The sum of numbers upto given number is
%d",sum);

}

else
printf("You entered a negative number.");

v A\
\ ¥}

Computer Science-X Unit5: Functions

A function is a block of statements that performs a particular task.
The functions which are available in C Standard Library are called
built-in functions.

The functions which are defined by a programmer are called user-
defined functions.

Some advantages of using functions are: reusability of code,
separation of tasks, reduction in the complexity of@blem, and
readability of code. O

Function signature describes the name, inpq@?d output of the
function.

We can define a function as follows &Q)

return_type name (Paramet@
{

Body of the Functi(QO
s
The return type of the fur@on is the data type of the value returned
by function. O

The name ofthe%@tion should be related to its task.
Parameters\afé,Variables of different data types, that are used to
receive the?ﬁ.ues passed to the function as input.

Bod function is the set of statements which are executed in the
fungetion to fulfil the specified task.

Calling a function means to transfer the control to that particular
function.

During the function call, the values passed to the function are called
arguments.

We can call a user-defined function from another user defined

function, same as we call other functions in main function.

ComputerScience-X Unit5: Functions

Q1 Multiple Choice Questions
1) Functions could be built-in or

a) admin defined b) serverdefined c)userdefined d)Bothaandc
2) The functions which are available in C Standard Library are called

a) user-defined b) built-in ¢) recursive d) repetitive

3) The values passed to a function are called ; \b

a) bodies b) returntypes ¢)arrays é}gu ments
4) charcd() {return'a'}.In this function “char”is ,é) Yl

a) body b) return type c) array Q)+ d) arguments

5) The advantages of using functions are
a) readability b) reusability C %debugging d) all

6) If there are three return statements in the function body, of
them will be executed. \
a) one b)ytwvo c) three d) firstand last

7) Readability helps to the code.
a) understand b! ify c) debug d) all
A\

8) s to transfer the control to another function.
a) calling b) defining c) re-writing d) including
Q2 Define t &owing.
1) Functl’bg 2) Built-in functions 3) Functions Parameters
4) Reusability 5) Calling a function

Q3 Briefly answer the following questions.

1) What is the difference between arguments and parameters? Give an
example.

2) Enlistthe parts of a function definition.

3) Is it necessary to use compatible data types in function definition and
function call? Justify your answer with an example.

4) Describe the advantages of using functions.

5) What do you know about the return keyword?

ComputerScience-X Unit5: Functions

Q4 Identify the errors in the following code segments.
a) voidsum (int a, intb)

{
returna+b;
¥
b) void message ();
{

return 23; O

¥
c) intmax (inta; intb) .\S\O

{ 4

if (a>b) Q)

return a; &

returnb; O

) R

d) int product (int nl, i@ n2)
return nl*n.2'
e) int totalDigitsq’Dx t x)

{
int c&h&?=e;
fo&@nt i=x;is>=1,i=1i/10)

count++;

printf (“Hope you are fine :)”); " |

eturn count

e

ComputerScience-X Unit5: Functions

Q5 Write down output of the following code segments.
a) int xyz (int n)

i
return n + n;

}

int main()

{
int p = xyx(5); \&
p=xyz(p); @)
printf (“%d “,p); ,<:§:)

) K

b) void abc (int a, int b, int c) &@

{ &Q)

int sum=a+b+c;

} QO
int main() \
O

1
intx=4,y =‘7C§§23, suml = 9;
abc (x, y, z @\
pr‘intf&‘? %4 x5 sz)5

}
¢) int aa (ihb)x)
; \§®®

int p = x / 10;

X++;
p=p+(p*x);
return p;
;
int main()
%
printf (“We got %d “, aa(aa(23)));
}

ComputerScience-X Unit5: Functions

d) float f3(int n1, int n2)

{
nl =nl+ n2;
n2 =n2 - nl;
return 9;
}
int main()
{
printf (*%f\n”, £3(3; 2)); &
printf (“%F\n”, £3(10, 6)); O
N

} @._

