CHAPTER

14 Solutions of Trignometric Equation

14.1 Introduction

eLearn.Punjab

14. Solutions of Trigonometric Equations

Solution: $1 + \cos x$ $\Rightarrow \cos x$ Since $\cos x$ is - Since 2π is the \therefore General van Hence solution
Example 3: Solve the
Solution: $4 \cos^2 x$
$\Rightarrow \cos^{2} x = \frac{2}{2}$ i. If $\cos x = \frac{\sqrt{3}}{2}$ Since $\cos x$ is $x = \frac{1}{6}$ $\therefore x =$ and \Rightarrow
As 2π is the p
∴ General v
ii. if $\cos x = -\frac{\sqrt{3}}{2}$
Since cos <i>x</i> is –ve
5

$$\therefore x = -\frac{1}{6} = \frac{3}{6}$$

As 2π is the peri

If
$$\sin \theta = \theta$$
 then $\theta = 0, \pm , \pm 2$,...
which can be written as $\theta = \mathbf{a}$, where $n = Z$.

In solving trigonometric equations, first find the solution over the interval whose length is equal to its period and then find the general solution as explained in the following examples:

Trigonometric equations have an infinite number of solutions due to the periodicity of the

The Equations, containing at least one trigonometric function, are called **Trigonometric**

Example 1: Solve the equation
$$\sin x = \frac{1}{2}$$

trigonometric functions. For example

Solution: $\sin x = \frac{1}{2}$

 \therefore sin x is positive in I and II Quadrants with the reference angle $x = \frac{1}{6}$.

:.
$$x = \frac{1}{6}$$
 and $x = -\frac{1}{6} = \frac{5}{6}$, where $x \in [0, 2]$

Equations, *e.g.*, each of the following is a trigonometric equation:

 $\sin x = \frac{2}{5}$, Sec $x = \tan x$ and $\sin^2 x \sec x = 1 \frac{3}{4}$

$$\therefore \text{ General values of } x \text{ are } \frac{-}{6} + 2n \text{ and } \frac{5}{6} + 2n \text{ , } n \in \mathbb{Z}$$

Hence solution set $= \left\{ \frac{-}{6} + 2n \right\} \cup \left\{ \frac{5}{6} + 2n \right\} , n \in \mathbb{Z}$

version: 1.1

he equation: $1 + \cos x = 0$

x = 0x = -1-ve, there is only one solution $x = \pi$ in [0, 2π] period of $\cos x$ alue of x is $\pi + 2n\pi$, $n \in Z$ n set = $\{\pi + 2n\pi\},\$ $n \in Z$

he equation: $4\cos^2 x - 3 = 0$

$$-3 = 0$$

 $\Rightarrow \pm \cos x = \frac{\sqrt{3}}{2}$

+ve in I and IV Quadrants with the reference angle

$$x = 2$$
 $\frac{11}{6}$ where $x \in [0, 2]$

period of cos x.

value of x are $\frac{1}{6} + 2n$ and $\frac{11}{6} + 2n$, $n \in \mathbb{Z}$

e in II and III Quadrants with reference angle $x = \frac{1}{6}$

and
$$x = x + \frac{1}{6} = \frac{7}{6}$$
 where $x \in [0, 2]$

iod of cos *x*.

14. Solutions of Trigonometric Equations

Solution: $\sin x \cos x$

$$\Rightarrow \frac{1}{2} (2\sin x \cos x)$$
$$\Rightarrow \sin 2x = \frac{\sqrt{3}}{2}$$

 \therefore sin 2x is +ve in I and II Quadrants with the reference angle $2x = \frac{1}{3}$

$$\therefore$$
 $2x = \frac{1}{3}$ and $2x = -\frac{1}{3} = \frac{2}{3}$ are two solutions in [0,2]

As 2π is the period of sin 2x.

- .: General values o
- \Rightarrow General values of

Hence solution

solution set by *k*.

Example 3: Solve the equation: $\sin 2x = \cos 2x$

Solution:

 \Rightarrow

- $\Rightarrow 2\sin x \cos x \cos x = 0$
- \Rightarrow

version: 1.1

Hence solution set
$$=\left\{\frac{1}{6}+2n\right\}\cup\left\{\frac{11}{6}+2n\right\}\cup\left\{\frac{5}{6}+2n\right\}\cup\left\{\frac{7}{6}+2n\right\}$$

14.2 Solution of General Trigonometric Equations
When a trigonometric equation contains more than one trigonometric functions, trigonometric identities and algebraic formulae are used to transform such trigonometric equation to an equivalent equation that contains only one trigonometric function.
The method is illustrated in the following solved examples:

 \therefore General values of x are $\frac{5}{6} + 2n$ and $\frac{7}{6} + 2n$, $n \in \mathbb{Z}$

Example 1: Solve:
$$\sin x + \cos x = 0$$
.

Solution:
$$\sin x + \cos x = 0$$

$$\Rightarrow \frac{\sin x}{\cos x} + \frac{\cos x}{\cos x} = 0 \qquad (\text{Dividing by } \cos x \neq 0)$$

$$\Rightarrow \tan x + 1 = 0 \qquad \Rightarrow \tan x = 1$$

tan *x* is –ve in II and IV Quadrants with the reference angle ..

$$x = \frac{1}{4}$$

$$\therefore \quad x = -\frac{1}{4} = \frac{3}{4}, \quad \text{where } x \in [0, 1]$$

As π is the period of tan *x*,

$$\therefore \quad \text{General value of } x \text{ is } \frac{3}{4} + n \quad , \qquad n \in Z$$

$$\therefore \quad \text{Solution set} = \left\{\frac{3}{4} + n\right\} \quad ,n \in Z.$$

he solution set of: $\sin x \cos x = \frac{\sqrt{3}}{4}$.

$$x = \frac{\sqrt{3}}{4}.$$
$$y = \frac{\sqrt{3}}{4}$$

of
$$2x$$
 are $\frac{1}{3} + 2n$ and $\frac{2}{3} + 2n$, $n \in Z$

f x are
$$\frac{-}{6} + n$$
 and $\frac{-}{3} + n$, $n \in \mathbb{Z}$
on set = $=\left\{\frac{-}{6} + n\right\} \cup \left\{\frac{-}{3} + n\right\}$, $n \in \mathbb{Z}$

Note: In solving the equations of the form $\sin kx = c$, we first find the solution pf $\sin u = c$ (where kx = w) and then required solution is obtained by dividing each term of this

> sin2x = cos2x $2\sin x \cos x = \cos x$ $\cos x(2\sin x - 1) = 0$

14. Solutions of Trigonometric Equations

As 2π is the period of cos x

: General values of

ii. If $\cos x = 1$ $\Rightarrow x = 0$ and $x = 2\pi$ As 2π is the period of $\cos x$

$$\therefore \text{ Solution Set} = \left\{\frac{\pi}{2} + 2n\pi\right\} \cup \left\{\frac{3\pi}{2} + 2n\pi\right\} \cup \left\{2n\pi\right\} \cup \left\{2\pi + 2n\pi\right\}, n \in \mathbb{Z}$$

$$\because \{2(n+1)\pi\} \subset \{2n\pi\}$$

Hence the solution

extaneous root.

Example 5: Solve the

Solution: $\csc x = \sqrt{3} + \cot x$

$$\Rightarrow \frac{1}{\sin x} = \sqrt{3} +$$
$$\Rightarrow 1 = \sqrt{3} \sin x +$$

 $\Rightarrow 1 - \cos x = \sqrt{3} \sin x$

 $\Rightarrow (1 - \cos x)^2 = (\sqrt{3} \sin x)^2$

version: 1.1

$$\therefore \cos x = 0 \quad \text{or} \quad 2\sin x - 1 = 0$$
If $\cos x = 0$

$$\Rightarrow x = \frac{1}{2}$$
 and $x = \frac{3}{2}$ where $x \in [0, 2\pi]$

As 2π is the period of $\cos x$.

General values of x are $\frac{\pi}{2}$ + $2n\pi$ and $\frac{3\pi}{2}$ + $2n\pi$, $n \in \mathbb{Z}$, If $2 \sin x - 1 = 0$ *.*. ii.

$$\Rightarrow \qquad \sin x = \frac{1}{2}$$

i.

Since sin x is +ve in I and II Quadrants with the reference angle $x = \frac{\pi}{6}$

$$\therefore$$
 $x = \frac{\pi}{6}$ and $x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ where $x \in [0, 2\pi]$

As 2π is the period of sin *x*.

 $\therefore \quad \text{General values of } x \text{ are and } \frac{\pi}{6} + 2n\pi \text{ and } 5\frac{\pi}{6} + 2n\pi, n \in \mathbb{Z},$

Hence solution set = $\left[\frac{\pi}{2} + 2n\pi\right] \cup \left\{\frac{3\pi}{2} + 2n\pi\right\} \cup \left\{\frac{\pi}{6} + 2n\pi\right\} \cup \left\{5\frac{\pi}{6} + 2n\pi\right\},$ $n \in \mathbb{Z}$

Example 4: Solve the equation: $\sin^2 x + \cos x = 1$.

Solution: $\sin^2 x + \cos x = 1$ $1 - \cos^2 x + \cos x = 1$ \Rightarrow $-\cos x (\cos x - 1) = 0$ \Rightarrow $\cos x = 0$ or $\cos x - 1 = 0$ \Rightarrow

i. If $\cos x = 0$

 $\Rightarrow x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$, where $x \in [0, 2\pi]$

6

$$x \text{ are } rac{\pi}{2}$$
 + 2 $n\pi$ and $rac{3\pi}{2}$ + 2 $n\pi$, $n \in Z$

, where
$$x \in [0, 2\pi]$$

 \therefore General values of x are 0 + 2n π and 2 π + 2n π , $n \in \mathbb{Z}$.

 $, n \in \mathbb{Z}$

$$\mathsf{set} = \left[\frac{\pi}{2} + 2n\pi\right] \cup \left\{\frac{3\pi}{2} + 2n\pi\right\} \cup \{2n\pi\}, n \in \mathbb{Z}$$

Sometimes it is necessary to square both sides of a trigonometric equation. In such a case, extaneous roots can occur which are to be discarded. So each value of x must be checked by substituting it in the given equation.

For example, x = 2 is an equation having a root 2. On squaring we get $x^2 - 4$ which gives two roots 2 and -2. But the root -2 does not satisfy the equation x = 2. Therefore, -2 is an

e equation:
$$\csc x = \sqrt{3} + \cot x$$
.

.....(i)

 $\cos x$

 $\sin x$

 $\cos x$

 $\Rightarrow 1 - 2\cos x + \cos^2 x = 3\sin^2 x$

14. Solutions of Trigonometric Equations

i)
$$\sin x = -\frac{\sqrt{3}}{2}$$

2.

i)
$$\tan^2 \theta = \frac{1}{3}$$

- $3\tan^2\theta + 2\sqrt{3}\tan\theta + 1 = 0$ 3. $\tan^2 \theta - \sec \theta - 1 = 0$ 4.
- $2\sin\theta + \cos^2\theta 1 = 0$ 5.
- $2\sin^2\theta \sin\theta = 0$ 6.
- **8.** $4\sin^2\theta 8\cos\theta + 1 = 0$
- $\sqrt{3}$ tan x sec x 1 = 0 9.
- **10.** $\cos 2x = \sin 3x$
- **11.** sec 3θ = sec θ
- **12.** $\tan 2\theta + \cot \theta = 0$
- **13.** $\sin 2x + \sin x = 0$
- **14.** $\sin 4x \sin 2x = \cos 3x$
- **15.** $\sin x + \cos 3x = \cos 5x$
- **16.** $\sin 3x + \sin 2x + \sin x = 0$
- **17.** $\sin 7x \sin x = \sin 3x$
- **18.** $\sin x + \sin 3x + \sin 5x = 0$
- **20.** $\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta = 0$

 $\Rightarrow 1-2\cos x + \cos^2 x = 3(1-\cos^2 x)$ $\Rightarrow 4\cos^2 x - 2\cos x - 2 = 0$ $\Rightarrow 2\cos^2 x - \cos x - 1 = 0$ $\Rightarrow (2\cos x + 1)(\cos x - 1) = 0$ $\Rightarrow \cos x = \frac{1}{2} \text{ or } \neq \cos x = 1$ If $\cos x = -\frac{1}{2}$

Since cos x is –v e in II and III Quadrants with the reference angle $x = \frac{\pi}{3}$

$$\Rightarrow x = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$
 and $x = \pi + \frac{\pi}{3} = \frac{4\pi}{3}$, where $x \in [0, 2\pi]$

Now $x = \frac{4\pi}{2}$ does not satisfy the given equation (i).

$$\therefore$$
 $x = \frac{4\pi}{3}$ is not admissible and so $x = \frac{2\pi}{3}$ is the only solution.

Since 2π is the period of $\cos x$

ii.

i.

 $\therefore \quad \text{General value of } x \text{ is } \frac{2\pi}{3} + 2n\pi \quad , \quad n \in \mathbb{Z}$ If $\cos x = 1$ \Rightarrow x = 0 and x = 2 π where x \in [0, 2 π] Now both csc x and cot x are not defined for x = 0 and x = 2 \therefore x = 0 and x = 2 are not admissible.

Hence solution set =
$$\left\{\frac{2\pi}{3} + 2n\pi\right\}$$
, $n \in \mathbb{Z}$

version: 1.1

8

Exercise 14

ions of the following equations which lie in [0, 2π]

ii) $\csc \theta = 2$ iii) $\sec x = -2$ iv) $\cot \theta = \frac{1}{\sqrt{3}}$ $\overline{3}$

Solve the following trigonometric equations:

ii) $\cos ec^2 \theta = \frac{4}{3}$ iii) $\sec^2 \theta = \frac{4}{3}$ iv) $\cot^2 \theta = \frac{1}{3}$

Find the values of θ satisfying the following equations:

```
7. 3\cos^2\theta - 2\sqrt{3}\sin\theta\cos\theta - 3\sin^2\theta = 0 [Hint: Divide by \sin^2\theta]
       Find the solution sets of the following equations:
                                                         [Hint: sin3x = 3sinx - 4sin^3x]
19. \sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta = 0
```