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2.1 INTRODUCTION

The ancient Greeks knew the concepts of area, volume and centroids etc. which are
related to integral calculus. Later on, in the seventeenth century, Sir Isaac Newton, an English
mathematician (1642-1727) and Gottfried Whilhelm Leibniz, a German mathematician,
(1646-1716) considered the problem of instantaneous rates of change. They reached
independently to the invention of differential calculus. After the development of calculus,
mathematics became a powerful tool for dealing with rates of change and describing the
physical universe.

Dependent and Independent Variables

In differential calculus, we mainly deal with the rate of change of a dependent variable
with respecttooneormoreindependentvariables. Now, wefirstexplain the terms dependent
and independent variables.

We usually write y =¢/(x) where f (x) is the value of f atx D, (the domain of the function

/). Let us consider the functional relation v=f(x)=x"+1 (A)

For different values of xe D,, f(x) or the expression x*+1 assumes different values.
For example; if x =1, 1.5, 2 etc., then

F()=(1) +1=2, £(1.5)=(1.5) +1=2.25+1=3.25
f(2)=(2) +1=4+1=5
We see that for the change 1.5-1 = 0.5 in the value of x, the corresponding change in
the value of y orf(x) is given by
f(L5)-f(1)=3.25-2=1.25

It is obvious that the change in the value of the expression x*+1 (or f(x)) depends
upon the change in the value of the variable x. As x behaves independently, so we call it the

independent variable. But the behaviour of y or f(x)depends on the variable x, so we call it
the dependent variable.

The change in the value of x (positive or negative) is called the increment of x and is
denoted by the symbol 6x (read as delta x). The corresponding change in the dependent

variable y or f'(x) forthe change 6x inthevalue of x isdenoted by 6y or 6 = f(x+8x)— f(x).
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Usually the small changes in the values of the variables are taken as increments of variables.

Note: In this Chapter we shall discuss funcions of the form y = fix) where X€D, and is

called an independent variable while y is called the dependent variable.
211 AVERAGE RATE OF CHANGE

Suppose a particle (or an object) is moving in a straight line and its positions (from
some fixed point) after times ¢ and ¢, are given by s(¢) and s(¢,), then the distance traveled in

the time interval 1, —r where ¢, >t is s(,)—s(¢)

and the difference quotient M (i)
-

represents the average rate of change of distance over the time interval ¢ —¢.

If ¢, —¢ is not small, then the average rate of change does not represent an accurate rate
of change near t. We can elaborate this idea by a moving particle in a straight line whose
position in metres after t seconds is given by

s(t)=1*+1¢

We construct a table for different values of t as under:

Interval Average rate of change (i.e. average speed)
t=3secstot =35 secs S(5)—S(3) _ (25+5)—(9+3) _30-12 9
5-3 2 2
t=3 secs to 1 =4 secs s(4)-s(3) _ (16+4)-12 _20-12 _
4-3 1 1
t=3secstot=3.5secs (49+7j_12 15
s(3.5)—s(3) _\4 2 _ 4 75
3.5-3 0.5 0.5

We see that none of average rates of change approximates to the actual speed of the
particle after 3 seconds.
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Now we construct a table by taking small intervals.

Interval Average rate of change
3.1) +3.1)-12 B
t=3secstot=3.1secs (( ) ) = 1271-12 = 0.71 =7.1
3.1-3 0.1 0.1
3.01)" +3.01)-12 B
t=3secstor=23.01 secs (( ) ) _ 12.0701-12_ 0.0701 =7.01
3.01-3 0.01 0.01
3.001)° +3.001)-12
t=3secstot=23.001 secs (( )+ ) _ 12.007001-12 _ 0.007001 _, ,,
3.001-3 0.001 0.001

The above table shows that the average rate of change after 3 seconds approximates
to 7 metre/sec. as the length of the interval becomes very very small. In other words, we can
say that the speed of the particle is 7 metre/sec. after 3 seconds.

If t=t+0t
then the difference quoteint (i) becomes

s(t+6t)—s(t)
ot
which represents the average rate of change of distance over the interval 6t and

i S(t+5t)—s(t)
m St , provided this limit exists, is called the instantaneous rate of change

of distance ‘s’ at time ¢.

212 Derivative of a Function

Let / be a real valued function continuous in the interval (x,xl)ng (the domain of
f), then

f(x)=f(x)

X —X

difference quotient (i)

represents the average rate of change in the value of f with respect to the change x, —x in
the value of independent variable x.
If x,, approaches to x, then
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i L= ()

X —=>Xx xl — X

provided this limit exists, is called the instantaneous rate of change of f with respect to x

at x and is written as f"'(x).
If x, =x+Jx ie.,x —x=0x,then the expression (i) can be expressed as

f(x+5x)—f(x)
ox

(i)

and

fim L (89)-/(x) (iii)

ox—0 5x
provided the limit exists, is defined to be the derivative of f (or differential coefficient
of f)with respectto x at x and is denoted byf'(x) (read as “f-prime of x"). The domain of

f'consists of all x for which the limit exists. If xe D,and f'(x) exists, then fis said to be
differentiable at x. The process of finding 1 is called differentiation.

Notation for Derivative
Several notations are used for derivatives. We have used the functional symbol f'(x),

for the derivative of f at x. For the function y = f(x).
y+§y=f(x+5x)-

where 6y is the increment of y (change in the value of y) corresponding to Jx,the
change in the value of X, then

5y=f(x+5x)—f(x) (iv)
Dividing both the sides of (iv) by X, we get

Sy _ f(x+5x)—f(x)
ox ox

(V)

Taking limit of both the sides of (v) as 6x — 0, we have
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lim 92— jim L (54 90) /(1)

Ix—0 5 X dx—0 5 X

(Vi)

. 0y . dy " . dy
lim — 1s denoted by — , so (vi) is written as —= f'(x
530 5 x Y dx v1) dx s ( )

Note: The symbol ? is used for the derivative of y with respect to x and here it is not a
X

quotient of dy and dx. % is also denoted by y".
X

Now we write, in a table the notations for the derivative of y = f(x)used by different
mathematicians:

Name of Leibniz Newton Lagrange Cauchy

Mathematician

A £ (%) £(x) Df (x)

Notation used for derivative — ——
dx or dx

If we replace x+6x by x and x by a, then the expression

f(x+6x)— f(x) becomes f(x)— f(a). and the change éx in the independent variable, in this
case,is x—a.

S (x+ox)-f(x) is written as f(x)-f(a)

So the expression
ox xX—a

(vii)
Taking the limit of the expressiom(vii) when x — a, gives

()1 (a)

xX—a xX—dad

=f"(a). Here f"(a)

is called the derivative of fat x=a.
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2.2 FINDING f'(x) FROM DEFINITION
OF DERIVATIVE

Given a function f, f'(x) if it exists, can be found by the following four steps
Step | Find f(x+6x)
Step Il Simplify f(x+dx)— f(x)

f(x+5x)—f(x)

Step il Divide f(x+dx)-f(x) by &x to get > and simplify it
X
Step IV Find lim S (x+6x) - f(x)
5x—0 5)(7

The method of finding derivatives by this process is called differentiation by definition
or by ab-initio or from first principle.

Example 1: Find the derivative of the following functions by definition

@ f(x)== (b) f(x) x°

Solution: (a) For f(x)=c
(i) f(x+§x):c
(i)  f(x+6x)—f(x)=c—-c=0
)

(iii) =—=0

ox ox
i)  gm LSS (0)=0
Ox—0 5x Ox—0
. d
Thus f'(x):O , that is, — (c) =0

dx

(b) For flx)=x°
(i) f(x+5x):(x+5x)2
(if) f(x + 5x) — f(x) = (x + §x)2 — X’ =x"+2x0x + (5)6)2 —x
= 2x0x + (5x)2 =(2x+6x)6x
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f(x+é'x)—f(x) (Zic+5x)5x

_(Z _2 0
(i) S5 5 x ox, (6x 0)
(iv) lim f(x+5x)—f(x) = lim (2x+5x):2x
Ox—0 5x Ox—0
ie., f’(x)=2x
Example 2: Find the derivative of /x atx=a from first principle.
Solution: If f(x)= Jx , then
(i) f(x+6x)=+x+6x and

(i) f(x+6x)—f(x)=vx+5x - Jx

_ (Vx+6x - Jx)(Vr+0x +Vx) (Vationalizing the]

Jx+6x +x
_ (x+5x)—x
Jx+6x +/x

numerator

(1)

. ox

le., f(x+5x)—f(x)—m+\/;

(iii) Dividing both sides of(1)by ox , we have
f(x+5x)—f(x) ox 1

ox ::5;(\/x+5x +x) Jx+ox ++/x
(iv) Taking limit of both the sides as 6x — 0, we have

( ox 0)

fim L 0N =) e

1
5x—0 5x §x%0(,1x+5x+\/;j

e, j%ﬂ:J;LE:%k (x>0)
and f'(a)= T
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or

Putting  x=ainf(x) =Jx , gives f(a) Ja

So S (x)=f(a)=\x~a

Using alternative form for the definition of a derivative, we have

f(x)=f(a) _x-+a

X—d a

() )
- (x—a)(\/;+\/;)

(rationalizing the numerator)

. X-a 1 ‘ a
_(x_—fa)(x/;+\/;) \/;+\/; ( )

Taking limit of both the sides of (ll)as x — a, gives

()

. f(x)-f(a) . 1 1
T vd S iids Ja+da

e, "(a)=
fa) 2Ja
1 dy .
Example 3: If y=—, then find e at x=— 1 by ab-initio method.
X X
. 1 .
Solution: Here y=—,so (i)
X
y+oy= 1 (if)
(x+5x)2
Subtracting (i) from (ii), we get
1 1 _)62—()c+c3')c)2

Sy=—— - =
Y (x+5x)2 x° xz(x+5x)2

(x + (x + 5x))(x — (x + 5x))

x? (x + 5x)2

O
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:£2x + 5x)(—5x) —5x(2x + 5x)
)c2(3c+5)c)2 )c2(3c+5x)2

(iii)
Dividing both sides of (iii) by 6x,, we have

Sy  —6x(2x ++5x) —(2x+6x) (6x 0)
ox x* (x+ 5)52 ox x° (x+ 5x)2

Taking limit as 6x — 0,, gives

lim oy = lim —(2x—+5x)2
ox—0 5x ox—0 x2 (x + 5)(:)

Note: The value of &y at

: : dy
IS written as — |
X dx x=—1

2
Example 4: Find the derivative of x* and also calculate the value of derivative at x = 8.

2

Solution: Let f(x)=x’.Then

f(x+5x) :(x+5x)§
and

) 5 [(x+5x)§—x§j|:(x+5x)i+(x+5x)§.x§+x;‘:|
f(x+8x) = f()=(x+8x) —x* =

4 2 2 4
(x + 5x)5 + (x + 5x)5 X3+ 3
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I:(x+5x)§:|3 —(xi 3

4 2 2 4 4 2 2 4
(x + 5x)5 + (x + 5x)g X3+ x3 (x + 5x)5 + (x + 5x)5 X343

(x + 5x)2 —x°

e, f(x+ %) f(x)= Ox(2r+dx) (i)
(x + 5x)3 + (x + 5x)5 X34 x°

Dividing both the sides of (i) by 6x , we get

f(x+5x)—f(x) 2x+0x .
= — (i)
é‘x 4 2 i

(x+6x)3 +(x+6x)3 X3 4 x3
Taking limit of both the sides as §x — 0, we have

\ 2x 2x 2
f(x): 4 2 2. 4

and  S®=—=1
3.(8)}
Example 5: Find the derivative of x’ +2x+3.

Solution: Let y=x’+2x+3. Then
() y+oy=(x+6x) +2(x+5x)+3
(ii) §y=_(x+5x)3+2(x+5x)+3}—[x3+2x+3]

::(x+5x)3 —x3}+2[(x+5x)—x]+(3—3)

= :(x+5x)—x][(x+5x)2 +(x+5x)x+x2J +20x

i 5y:5x[(x+5x)2+(x+5x)x+x2]+25x

X ox

version: 1.1
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:(x+5x)2+(x+5x)x+x2+2

(v) 1im2 = lim | (e 6x)" + (x4 Sx)x+ 2" +2

Ix—0 5 X ox—0

%z(x)2+(x)x+x2+2

i.e., i(x3 +2x+3) =3x+2
dx

(@) We find the derivative of x" when n is positive integer.
(@) Let y=x".Then
y+5y=(x+5x)n
and 5y =(x+6x) —x"
Using the binomial theorem, we have

Sy= {x" +ax" Sx + ”(”2_ D

X"((0x (5x)">;| %

n(n—1)

2
Dividing both sides of (i) by ox, gives

ie., 5y=5){nx"_l+ #PHx . (5x)”_1} (i)

%:nx”1 + n(Tz_ 1) X" 6x +.. (Ox)" (i)

Note that each term on the right hand side of (ii) involves 6x except the first term, so

taking the limit as 6x — 0, we get Q:nx”‘l

dx

As y=x", so %(x”) nx""
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' reduces to i(xo):OxO‘1

dx

Note: If n = 0, then the formula i(x"):nx"‘

dx

4 (1)=0 which is correct by example 1 part (a).

X

(b) Let y=x" where n is a negative integer.
Let n =-m (m is a positive integer). Then

y=x"=— (1

1 .
and +0y=——"— (i)
yrer (x+5x)m

Subtracting (i) from (ii). gives

5y=;m—i= X —(x+5x21
(x+5x) x" x’”(x+5x)
x" —(xm - mxm_l5x+m(m_l)x”’_2(5x)2 +...+ (é‘x)m)
_ 2
x" (x+5x)m

(expanding (x+6x)" by binomial theorem)

m(m—l)
|2
xm.(x+5x)m

and 5y= il .meml +ﬂvné;l)xmz.5x (5x)m_l]

ox x’”l(x + 5x)m

—é'x(mxm1 +

X"2Ox + ..+ (é'x)m_l]

Taking limit when 6x — 0, we get

& )

— (all terms containing Jx ,vanish)
dx  x".x

=0 i.e,,

()
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or %(x) = nx

So far we have proved that di[x] =nx"",if neZ
X

The above rule holds if neQ0-Z

1

2 2.
For example i(ﬁ):%ﬁ 2
3x3

dx 3

The proof of di[x] —nx"" when ne Q-7 is left as an exercise.
X

Note that i[x} =nx"" is called power rule.
dx

1.  Find by definition, the derivatives w.r.t ‘x’ of the following functions defined as:

. , ) B T o1 1
(i) 2+1 (i) 2-+x (i) N V) v —
Vi) x(x-3) (i) = Wil (x+4) (%) X x) x
X
(xiy * -MEN  (xii) ml (xiii) x" (xiv) x "
X" ,me
2. Find @ from first principle if
dx
(i) Vx+2 (if) ——
X+a
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2.2.2 DIFFERENTIATION OF EXPRESSIONS OF THE TYPES:

1

(ax+b)n and -, n=12,3...
(ax+b)
We find the derivatives of (ax+5)" and — from the first principle when ne N
(ax+b)
Example 1: Find from definition the differential coefficient of (ax+5)" w.r.t. ‘x’ when n

is a positive integer.

Solution: Lety = (ax + b)", (nis a positive integer)

Then y+§y:[a(x+5x)+b]n :[(ax+b)+a5x]n
Using the binomial theorem we have

y+Sy=fax b) m(mx b)" (adx) (Zj(kax b)Y (as%) +... (adx)
Sy=(y+8y)-y= m(ax +b)" (adx)+ @(ax +b)” a(6x) +..+a" (5x)'

=5J{(T](ax+b)nl .a+@(ax+b)”-2 .a25x+...+a"(5x)nl}

Q_ n n—1 n n—-2 2 n n—1
So 5x—(1}(ax+b) a+(2)(ax+b) aox+..+a (§x)

Taking limit when 6x — 0, we have

Ox—0 5x Sx—0

lim oy = lim KTJ(W + b)n_1 a+ (ZJ(ax + b)n_2 aox+..+a" (5x)nl}
Or @ = Lf)(ax+b)n_l .a [All other terms tends to zero when 6x — 0]

dx

Thus %(ax + b)" = n(ax + 2'7)"_1 a
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Example 2: Find from first principle, the derivative of

Solution: Let y= (when n is a positive integer). Then

n

(ax+b)

y+0O0y= ! and

[a(x + 5x) + b]n

Sy=y+dy—-y= 1 —
[(ax+b)+a5x]n (ax+b)n

(ax + b)" — (ax +b+ aﬁx)n
[(ax + b) + aé‘x]n (ax + b)n
-1

o é‘y:[(aix+1;)+a§x]n (ax=+b)

or Jy=

nx[(ax b) aé‘x]" (ax b)n]

Using the binomial theorem, we simplify the expression

[(ax+b)+asx] —(ax+b) Thatis,

[(ax+b)+adx] —(ax+b) =[(ax+b)’ +[fj(ax+b)"_] (abx)
+[Zj(ax+b)n_2 & (5x) +...+(adx)']

_ @(ax b)Y s +[Zj(ax+b)n_2 @ (%) 4t a (5x)

:5xKT](ax+b)"l .a+(§)(ax+b)"_2 a25x+...+a”(5x)nl}

Now (I) becomes

o= [(ax+b)+a55);]n(ax+b)"[(nJ(a% 2

(ax+b)

w.r.t. ‘x’,

n

)
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+(Z](ax + b)n_2 a’ox+..+a" (5)6)”_1]

and oy _ ! - [(n](ax b)n_l.a
ox [(ax+b)+a5x] (ax+b)n 1

+(Zj(ax+b)n_2 .a25x+...+a”(5x)n_l]
Using the product and sum rules of limits when 6x — 0, we have
oy _dy

v lim—=
ox—0 5x dx

d_ : (f](aae b a

dx (ax+b)n (Clx+b)n OX vanish

1 —na
or = n = I nl
dx {(aerb) ] (ax+b)

and

all other terms containing

1.  Find from first principles, the derivatives of the following expressions w.r.t. their

respective independent variables:

(i) (aerb)3 (ii) (2x+3)5
(i) (3r+2)" (iv) ( ib)s
ax
1
M by
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2.3 THEOREMS ON DIFFERENTIATION

We have, so far proved the following two formulas:

1. %(0) =0 i.e.. the derivative of a constant function is zero.
X

2. di(x”)znx”_l power formula (or rule) when n is any rational
X
number.

Now we will prove other important formulas (or rules) which are used to determine
derivatives of different functions efficiently. Henceforth, in all subsequent discussion, f, g, h
etc. all denote functions differentiable at x, unless stated otherwise.

3. Derivative of y=cf(x)

Proof: Lety=c¢f(x) . Then

(i) y+dy=cf(x+5x)and

(i)  y+8y—y=c (x+8x)—cf (x)

or Sy=c|f(x+dx)-f(x)] (factoring out )

iy 9 :C(f(x+5x)—f(x)j

ox ox

Taking limit when §x—0

e tim LX) = (%)

(iv) lim lim o

dx—0 5 X Ix—0

3 i {C.f(xwgz—f(ﬂ}

A constant factor can be taken out from a limit sign.

Thus =c f'(x) thatis, [cf(x)}l =cf '(x)

dx

4
Example 1: Calculate i(&ﬁ)
dx
d(, 3 d{ 3
Solution: E(3x3]=3£(x3] (Using Formula 3)
4 L 1
=3X§X3 =4x° (Using power rule)

4. Derivative of a sum or a Difference of Functions:
If f and g are differentiable at x, then f + g, f — g are also differentiable at x

and [f(x)+g(x)1 =f'(x)+g'(x), that s, %I:f(X)-i-g(X)]:%[f(X)]-Fa g(x)] Also
[7()-2(x)] = /()= (x)- thatis, L1 (x)-g(x)] =L s (x)]-L ()]

Proof:  Let ¢(x)=/(x)+g(x).Then

(i) (x+5x) (x+5x)+g(x+5x) and

(ii) ¢(x+5x) ( )= f(x+5x)+g(x+5x [f (x)]
=[ f(x+0x)- f(x)]+[ g(x+0x)-g(x)] (rearranging the terms)
¢(x+§x) ( ) If(x+5x) ( ) g(x+§x)—g(x)

ox ox ox
Taking the limit when 5x — 0

¢(x+5x)—¢(x) dim f(x+5x)—f(x) g(x+5x)—g(x)}

(iii)

(iv) lim

ox—0 5x ox—0 5_x 5_x
—dim f(x+5x)—f(x) lim g(x+5x)—g(x)
Ox—0 5x Ox—0 5_)(;

(The limit of a sum is the sum of the limits)

= () +g'(x), thatis [ £(x)+g(x)] = £'(x)+£'()
or < f(x)+g(x)]==L ()] + ()]

The proof for the second part is similar.
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Note: Sum or difference formula can be extended to find derivative of more than two

functions.

Example 1:

Solution: y-= Seelei e iongs
4 3 2
Differentiating with respect to x, we have

dy[3 4+2x +1x +2x+5} i[§x4}+i{3x3}+ d{l 2}+i(2 )+i(5)
dx 3 2 dx| 4 dx| 3 dx dx dx

(Using formula 4)

:%%(x) icj’ic(x)Jr;ch( )+2%(x)+0 (Using formula 3 and 1)

3

:Z(4x4_1)+§(3x3_1)+%(2x2_1)+2(1.x1_1)

=3 +2x° +x+2

(By power formula)

Example 2:

Solution: y=(x*+5)(x’+7) =X +5x° +7x* +35
Differentiating with respect to x, we get

dyd

I dx[x +5x° +7x° +35]

:%[xsj+5%(x3)+7%(x2)+%[35] (Using formulas 3 and 4)

=5x>T+5x3x3"+7x2x%"+0
=5x*+ 15x2+ 14x

Find the derivative of y A NS R w.r.t. x.

Find the derivative of y =(x”+5)(x'+7) with respect to x.
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Example 3:

Solution: y= (2\/; + 2)(x—\/§)
=2(Vx +1)fx (V= 1) =24 (Ve +1)(Vx - 1)

3 1

=2\/§(x+1):2(x2—x2]

Differentiating with respect to x, we have

3 1
d_y:i 2| x2 —x?
dx dx

5. Derivative of a product. (The product Rule)

If f and g are differentiable at x, then fg is also differentiable at x and

[f(x)g(x)] =/"(x)g(x)+ f(x)g

e
%mx)g( L 70]

), that is,

)[%[g(x)ﬂ

Proof:  Let ¢(x)=f(x)g(x). Then
(i) ¢(x+5x) ( )g(x+5x)
(ii) ¢(x+§x) ( ) (x+5x) (x+5x)—f(x)g(x)

Subtracting and adding f(x)g(x+dx) in step (ii), gives
¢(x+5x)—¢(x)=f(x+5x) (x+5x)—f( ) (x+5x)+f( ) (x+5x)—f(x)g(x)
—[f x+5x ]g x+§x)+f [g x+5x) (x)]

Find the derivative of y= (2\/§ + 2)(x —\/E) with respect to x.

@)

version: 1.1
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e e e TR e

Taking limit

(iv) lim

when 6x —0

¢(x + 5x) — ¢(x)

6x—0

ox

= lim{f(x+5x)_f(x)-g(x+5x)+f(x).g(x+5x)‘g(x)}

ox ox

d

lim g(x + 6x) + lim £ (x). im S0 28()

ox x>0 5x—0 5x—0 ox

(Using limit theorems)

- PR+ F(D)g(x) [ lime(x+o)=g(x)]

d

or 4L r(x)e(]=e (]} elx) 10 4ex)

Example: F

ind derivative of y=(2\/;+2)(x—x/;) with respect to x

Solution: y= (2\/§ + 2)(x = \/;)

= z(x/;+1)(x—\/;)

Differentiating with respect to x, we get

@ _,
dx

=2

=2

A1)

dx

:(%(&+1)j(x_¢;)+(¢;+1)di(x_¢;)}

X

:ex;I +Oj(x—\/;)+(\/;+l) x (1—%x;1ﬂ

2. Differentiation
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(=)

version: 1.1

1 1
=2_m(x—\/;)+(\/;+l)x(l—2\/;ﬂ
[ x—x Jx -
T +(¢;+1)(2z_&lﬂ
=%[x—\/;+2x—\/;+2\/;—1}
_ 3x-1
- U

6. Derivative of a Quotient (The Quotient Rule)

If f and g are differentiable at x and g(x)=0, for anyxe D(g)then /s differentiable

at x and (f(x)j = f'(x)g(X)—fgx)gv(x)
[g(x)]

] Ll e e
that Is, —{ } [g(x)T

i ot S)—d(x :f(x+5x)_f(x):f(x+§x)g(x)—f(x)g(x+§x)
(i) ¢( 5) ¢() g(x+5x) g(x) g(x)g(x+5x)

Subtracting and adding f(x)g(x) in the numerator of step (ii), gives

f(x+§x)g(x)—f(x g(x)—f(x)g(x+5x)+f(x)g(x)

¢(x+5x)—¢(x)= g(x)g(x+5x)
1

_ [(f(x+8x)= £ (x)) 2 (x)- 1 (x)(g (x+6%) - g(x))]

g(x)g(x+dx)
=)

version: 1.1
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#(x+6x) - g(x) f(x+6x)—f(x) (x+6x)—g(x)
(iii) N _g(x)g(ﬁgx){ = glx) f(x) BT }

Taking limit when §x — 0

(v) lim 29090

Ox—0 5_x

£i£r({g(x)g(1x+5x)(f(x+55)2—f(x).g(x)_f(x).g(x+5x)—g(x)ﬂ

Using limit theorems, we have

1

V) mal e S)ekn] = (v lime(r o) g(x)

Thus (f (x)}' S(Ng(x)-f(x)g'(x) d ( f(x)] [dx[f (x)]}g (x)-1 (X)[;i[g(ﬂﬂ
g(x) [g(x)] dx

First Alternative Proof:

/(%)
g(x)
Using the procedure used to prove product rule, quotient rule can be proved.

Second Alternative Proof: We first prove the reciprocal rule and then use product rule to
prove the quotient rule.

¢(x)= can be written as f(x)=¢(x)g(x)

The reciprocal rule. If g is differentiable at x and g(x) =0, then L is differentiable at x and

g
d
d| 1 ‘d[g o . . .
— =—4ax — (Proof of reciprocal rule is left as an exercise)
dx| g(x) [g(x)

version: 1.1
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Using the product rule to f(x). :

g(x)’
%{m)-g(lx)}={%[f<xﬂ)-ggx) f(X)-%L(IxJ

3

(\/;+1)(x2 —IJ

Example 2: Find & if y= 1 . (x#1)
dx xi _1

Solution: Given that

] () 0]
y== % \/;

( x+1))c( )(x+1+\/—) (\/;+1)(x+1+\/;)

-1

(\/;+1)(\/_ )(x+1+\/_) (\/;+1)2 (\/;+1)x

= x+1+2\/;+x\/_+x x2 +2x+2x2 +1

1 3 1
@_4d x2 +2x+2x i) x2 +i(2x)+i 252 +i(1)
dx  dx dx dx dx dx

1
:%x2+2(1)+2. !

w

+O=i\/;+2+L

2 2 Jx

=)

version: 1.1
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Example 3: Differentiate —— with respect to x.

Solution: Let y= —

(\/;+1){x;—l}
\/;(x—l)
(\/_+1)(\/_ )(x+ x+1) (x 1)( x+1)
Vr (Vx -1) Vx(Vx-1)

_ x+Ax+1

NS

Differentiating with respect to x, we have

ﬂ_i x++x+1
dx  dx \/;
_ \/;;;()H x+1)—(x+ x+1)§;(\/;)

)

(
@+ xz+oj - x+1( ]

J;@+2J;)4x+ )

X

ﬁ‘

\/;(2\/;+1]_x+ x+1

L 2V 2x  2xax—x—x-1 x-d
- T 3
X x2x 252
3 a2
Example 4: Differentiate 2x 23x 3 with respect to x.

x +1

Solution: Let ¢(x)= 2x _23x >

+1
f(x)=2x3—3x2+5 and g(x)=x"+1

. Then we take

Now f'(x)= j[Zx ~3x" +5]=2(3x") - 3(2x) + 0= 6x" — 6x
X

and g'(x)zdi[x2+l]=2x+0 = 2x
X

['(x)g(x)-f(x)g'(x)
[5(x)]
d {2;63 — 352 +5} ~ (6x2 —6)6)()62 +1)—(2x3 +3x° +5)(2x)
dx x*+1 (xZ +1)2
6x* —6x" +6x” — 6x — (4x* — 6x” +10x)
(x2 +1)2
6x* —6x° +6x” —6x —4x* +6x° —10x

(x2 +1)2

B 2x* + 6x* —16x

(x2 +1)2

,we obtain

Using the quotient formula: ¢'(x)=

Differentiate w.r.t. x

a+x

1. X2+ X7 2. X 42x7% 43 3.
a—x

version: 1.1
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2x-3
4 5 -5)(3
vt (x=3)(3-x)
3
42
(1+\/;)£x x J (x2+1)2
7. 8. 5
Jx x* -1
I+x 2x—1
10. 11.
1-x VX' +1
2
13. x"+1 14. Vi+x —l1-x
x> =1 J1+x ++/1-x
16. Ify:\/——L,ShOWthath@+y:2\/;
\/; dx

4xy—1

17. If y=x"+2x*+2, prove that §:
X

24 THE CHAIN RULE

12.

15.

(-4

x+1

2
X

a_
a—+
xNa+x
va

3
X
X

-X

The composition fog of functions fand g is the function whose values f[g(x)], are found

for each x in the domain of g for which g(x) is in the domain of f.(f[g(x)]) isread as fof g

of x).

Theorem. If g is differentiable at the point x and f is differentiable at the point g(x) then

the composition function fog is differentiable at the point x and ( fog)'(x)= /" [g ].g'(x)
The proof of the chain rule is beyond the scope of this book.
If y=(fog)(x f[g ],then
(fog)'(x)=£/[ g(x ] ==
= ——f [g(x ]-g'(X) (1
Let u= g(x) (i)
Then y=f(u) (iii)
version: 1.1
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Differentiating (ii) and (iii) w.r.t x and u respectively, we have.

dx [g )]=2'(x)

2 d[f )=/

Thus (|) can be written in the following forms

and

d o d
@ (/) =r()
o D du

dx du dx

The proof of the Chain rule is beyond the scope of this book.

Note: 1. Let y:{g(x)]" and u g(x)

n dv n—
Then y =u" and — = nu"" (power rule)

du
dy dy dll nun—l@
dx  du’ dx dx

or [ g(x)]' =n[g(x)]".

2. Reciprocal rule can be written as

But

| e = ]
x)]f2 .g’(x)

Example 1: Find the derivative of (x3 +1)9 with respect to

Solution: Lety+:(x3 1)1andu ¥ 1Theny u’

version: 1.1
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Now ﬁzéxz and @ 9u®

(Power formula)
dx du

Using the formula A _ g, , we have

X dx
or i(ﬁ +1)9 =9(x3 +1)8(3x2) ( u =x" +l and du :3x2)
dx dx
=272 (& +1)
Example 2: Differentiate |~ ,(x#—a) with respect to x
a+x
1
Solution: Let y= 7Y and u=="2 Theny u?
a+x a+x
1 1
Now ﬂzlbﬂ 1:lu 2
du 2

and ﬂ:i{a—x}: L?;(a_X)}(“”)—(a—X){ic(am)}

dx dx|a+x (a+x)2
:(0—1)(a+x)—:(_fl—x)(0+1) —-a—-x—a+x —2a
(a+x)2 (a+x)2 (a+x)2
Using the formula _y_ﬂ.@, we have
x u dx
d| |a-x _l —% —2a _l(a—xj; y —2a ( u:a—xj
dex\ Va+x 2 (a+x) 2 a+x (a+x) a+x
1
(a—x) 2 —a —a
N 1 N T 3
(a+x) 2 (a+x) (a—x)2(a+x)2

version: 1.1
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Example 3: Find 2 if _Natx+ya-x (x#0)
dx \/a+x—\/a—x
Solution: _Natx+va-x

P atx—Ja—x

Multiplying the numerator and the denominator by va +x —va—x, gives

_(\/a+x+\/a—x)(\/a+x—\/a—x)
y‘(Ja+x_Ja_xxJa+x_Ja_x)

(m)z—(m)z :£a+x)—(a—x) 2x
(a+x)+(a—x)—2\/a2—x2 2a—2Jd* —x° 2(a—\/a2—x2)

X

a—-a’ —x°
Let f(x)=x and g(x)=a—+a’—x*, then

1

f(x)'zl and —g'(x):(} %(uz 3&2)5 l(a2 —xz)gil d (a2 x2)

thatis, y =

Using the formula j—y = S(x) g([x)(— )Jigx) g'(x)
x g(x
2 2 X
d_yzl.(a— a —x )—x. E—
N P

2 2 2 2 2
aNa —x —(a -X )—x aNa* —-x* —-d°
= 2 =
\/az—xz(a— az—xz)

version: 1.1
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o) |
\/az—xz(a—\/az—xz) \/az—xz(a— az—xz)

N | W

Example 4: Find % if y :(1+2\/;)3 X
X

Solution: y=(1 4‘3\5)3'"; {(1 2\/;)()(;}}3

\ ;
Let u :(1+2\/;).x2 (1)
Then y=u’ (ii)
Differentiating (ii) with respect to u, we have |

2
d__ , 1 2
;lii__w 3{(:1 2&))&} 31 24x) x
Differentiating (i) with respect to x , gives

(o2l ) (1e2vm)

1+2Jx  2dx+1+2Jx  1+4Jx
2Vx 24x 2Jx

=1

Using the formula @ Q.ﬂ ,we have
dx du dx
d s 2 > (1+4/x
E{(HZ\/;) .x%—?)(l 2x) .xx( N ]

3 2
=2(1 29 V(1 avx)
=—(1 2V} (Vx 4x)
Example 5: If y = (ax + b)"where n is a negative integer, find % using quotient theorem
X

Solution: Letn=-m where mis a positive integer. Then

y=(ax+b) = (ax+b)_m=m (1)

We first find i(ax + b)m. Lettt =ax b. Then

dx
%(ax+b)m :%(u’”)zé(um)% (using chain rule)

=#mu"" x a=m(ax b)m_1 a ('.'di(ax+b) — aj
Now differentiating (i) w.r.t.’x’, we have ¥

dx E

dy _d [ 1 } 5(1).(ax+b)’” _l-j(CZX+b)m

X X
(ax+b)m

[(ax+b)m}2
0.(ax+b)" —1.m(ax+b)m_1 a
(ax+b)2m
- :( i (ax b)ml.a) x(ax bc)fzrfl— m(ax b) .a
=(-m) (ax+b)"" .a+=n(ax b)"" a =(c-m n)

Example 6: Findﬂ if y=x" where n= P ,q#0
dx q
Solution: Given that y =x" where n "y ,q #H.putting n E,we have
q q
P
y =x* (i)
Taking gth power of both sides of (i), we get
y' o=x’ (i)

Differentiating both sides of (ii) w.r.t. ‘x*, gives

d ., _d, , d ., dy _d,/, : -

“ - & el = Using chain rule

a’x(Y) dx(X ) or dy(y) dx dx(x )( 8 )
dy

= qy’’ a =px”™ (iii)

version: 1.1
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Multiplying both sides of (iii) by y, we have

q.y* % =pyx”" or qx’ % =p.x x""  (using (i) and (ii))
x x
:>d_y:£ . ! xix"_1 P xxfw_l_p
dx q x” q
24
= Lo —px! {.'Ezn}
q q

Thus i(x") nx"".
dx

2.5 DERIVATIVES OF INVERSE FUNCTIONS

If for each x = D, fix) =y and for eachy « D, g(x) =X then fand g are inverse of each
other, that is,

(gof)(x) =g(f(x)=g(y) = x (1)
and (fog)y) =/gl) =/x) =y (i)
Using chain rule, we can prove that

J(x).g'(y)=1

N
AT

f@=y = w=-2
dy _ 1 dx
0 and g(y) =x=> g0) = 7

2.6 DERIVATIVE OF A FUNCTION GIVEN IN
THE FORM OF PARAMETRIC EQUATIONS

The equations x=at* and y =2at express x and y as function of . Here the variable ¢
is called a parameter and the equations of x and y in terms of ¢ are called the parametric

version: 1.1

equations.
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Now we explain the method of finding derivatives of functions given in the form of
parametric equations by the following examples.

Example 1: Find % if x =at’ and y = 2at.
X

Solution: We use the chain rule to find &

dx
Hered—y=i(2at)=2a.1=2a
dt dt
dc _d , ,
and — =— (at’) =a (2t) = 2at
” dt( )=a (2t)
dy
SO d—yzﬂ.ﬂzﬁzz_azz_a (...za:y)
dc dt dx @ 2at y
dt

2 2 2
Eliminating ¢, we getx = a (lj = a. y_2 P AREN ¥ = dax (i)
2a 4a 4a

Differentiating both sides of (i) w.r.t. ‘x" we have

d , _ d
0 = —(dax)

d ,.  dy d dy
—(?%). = =4a— =2y~ =44 (1
dx(y) dx adx(x) ydx a (1)
dy _ 2a
dx y
. dy . 2 2 3
Example 2: Find e ifx1-¢ andy=3¢"-2¢ .
X
Solution: Giventhatx=1-¢...... (i) and y = 3t> — 2¢? (i)

Differentiating (i) w.r.t. ‘¢' ,we get

version: 1.1
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dy d d,. d
%:5(142):5(1)—5(#):0—%: — 2t

Differentiating (ii) w.r.t. ‘¢’ ,we have

d d d d
% = E(?)tz ~21%) = Z(Stz )—E(zﬁ)

=3(2t)-2(3¢") =6t - 6£* =6t (1-1)

Applying the formula

dy
dy _dy dt_ g4t
de dt dx dx
dt

6t(1—1)
= =-3(1-¢)=3(¢t-1
0 3(1-0)=3(-1)
. dy. 1-¢° 2t
E le 3: Find = if x = - =
xample 3 ind L= T Y
1+
Solution: Given that x::(1:t2) (i) and y litﬂ (ii)
Differentiating (i) w.r.t. ‘¢’ ,we get
d d
& _d g :(dt(l—tz))(1+tz)_(1—ﬂ),dt(1+t2)
dt  dt\ 1+¢ (1+1¢%)°
C(2)(1+27) = (1-2)(20) 26(-1-1 -1+1) 44
(1+t2)2 (1+t2)2 (1+t2)2

Differentiating (i) w.r.t. ‘¢’ ,we have

version: 1.1
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d d
dy _df_ 2 (dt(Zt))(1+t2)—2t X dt(l+t2)
@i (1+t2)2
2(1+t2)_—2l‘(%t) 2+2t_2—4t2 52 2(1—t2)
(1+;2)2 - (1+_l2)2 (1+t2)2 (1+t2)2

2(1-#%)
dy 5
dy _dy dr g (147) _2(1-7) r-
dc dt dx Ay 4 4 2
dx (1+t2)2
2.7 Differentiation of Implicit Relations

Sometimes the functional relation is not explicitly expressed in the form y=f(x)

butan equationinvolving x and y is given. Tofind % from such an equation, we differentiate
X

each term of the equation and use the chain rule where it is required.The process of finding

% in this way, is called implicit differentiation. We explain the implicit differentiation in the
X

following examples.

Example 1: Find ;l—yif X +y =4
X

Solution: Here x* +)° =4 (i)

Differentiating both sides of (i) w.r.t. ‘x*, we get

version: 1.1
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dy
2x+2y—=0
ydx
or x+yﬂz0 3d—y= X
dx dx y

Solving (i) for y in terms of x, we have
= SIS
= y=+4-x (ii)

2

or y= ¥4 x (il

& found above represents the derivative of each of functions defined as in dx

dx
(i) and (iii)
From (i1) ﬂ:; X (—2x)= _r
dx 24— 4 x*
:_i ( 4—x2 :y)
Y
From (iii) & o—— 1« (2x)=———=-= ( Jd—x= y)
dx  24-x’ —4-x* Y
Example 2: Find % Jify? +x* —4x =5,
X
Solution: Given that y* + x> —4x=5 (i)

Differentiating both sides of (i) w.r.t. ‘x" ,we get

d d
g )
d d d d d
" 2yd_>yf+2x_4:0 [-.-E(f):dx(f)dz:zydﬂ

version: 1.1
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2(2-x) 2- )
L gy, o 20279 2-a (i)
dx dx 2y y

Note: Solving (i) for y, we have

Y =5+4x—x = y = im
Thus y=+/5+4x—x* (iii)
or y=—/5+4x-x (iv)

Each of these equations (iii) and (iv) defines a function.
Let y=fl(x) = \5+4x—x° (V)
and y:fl(x) = —\5+4x—-x". (vi)

Differentiation (v) w.r.t. ‘x*, we get

1 2\ 3 2—-x
"(x)=—(5+4x—x 2% (4-2x)=
N
From (v), 5+4x—x2:y,: SO f]'(x) 2—x
y
Also fz'(x):_l(5+4x_xz)—§X(4_2x): 2-x
2 —5+4x—x
From (vi) —m:y’ —so  f,"(x) 2-x
y

Thus (ii) represents the derivative of f,(x) as well as that of f,(x).

Example 3: Find %if Y —xy—x>+4=0.
X
Solution: Giventhaty’—xy—-x>+4=0 (i)

Differentiating both sides of (i) w.r.t. ‘x*, gives

version: 1.1
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2. Differentiation

d 2 2
—| Yy =xy—-x"+4|=—(0 =0
)
or 2y [1y+xP ) 2x10=0
ydx % xdx x+0=
= (2y—x)ﬂz%x y :d_y:M
dx dx 2y-—x
Example 4: ind i 1 —2xy? - 2 =
ple 4: Find —if y” -2xy" —x"y+3x=0.

dx

Solution: Differentiating both sides of the given equation w.r.t. ’x’we have

%[y3—2xy2+x2y+3x]=%(0) =0
d d d d

or E(Jﬁ)—a(bcyz)+E(x2y)+a(3x)=O
%(y3)—2[1.y2+x%(y2)}r(2xy+x2%j+3=0

i . d d
Using the chain rule on —(y°) and —(y*), we have
g ~-(v7) and —-(»?)

3y2@—2 y2+x(2yd—yj +2xy+x2ﬂ+320
dx dx dx

or (3y2—4xy+x2)%:2y2—2xy—3
X

d 2y* = 2xy -3

= & e

dx 3y" —4xy+x
. . , 1 1
Example 5: Differentiate x"+— w.rt. x——
X X

Solution: Let y=x 1 and u x l. Then

dx X X X X
du 1 1 x*+1
and —=1-(-1)— =l+—=
dx ( )XZ x2 x2
2(x* —1)(x*+1 2 2(x* -1
T
du dx du X x +1 X X

Find % by making suitable substitutions in the following functions defined as:
X

i)  y= )t () y=vxidx (i) pe=x O
1+ x a—x
i 6 a’+x°
(iv) y =(3x2 —2x+7) (V) >
a’ —x
Find 4 if:
dx

(i) 3x+4y+7=0 (i) xp+y° =2
(i) x*—4xy—5y=0 (iv) 4x +2hxy+by* +2gx+2fy+c=0

(V) x\/1+y+y\/l+x:0 (vi) y(xz—l):x\/x2+4

Find % of the following parametric functions
X

. 1 ) a(1-1%) 2bt
v 0 Y " v 0 14r
2
Provethatyd—y+x:0 if x:1 tz , y:i
dx 1+1¢ 1+1¢

version: 1.1
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5. Differentiate

(i) xz——2 wr.t x* (i) (1+x2)n wr.t X
X
x*+1 x—1 . ax+b ax’ +b
(i) > wr.it — (iv) w.r.t —
x =1 x+1 cx+d ax“+d
x> +1 3
\Y) w.r.t x
(V) R

2.8 DERIVATIVES OF TRIGONOMETRIC
FUNCTIONS

While finding derivatives of trigonometric functions, we assume that x is measured in

radians. The limit theorems lim> 2~ —3 and liml_cosx

. =0 x x—0 X
formulas for sin x and cos x.
We prove from first principle that

0 are used to find the derivative

d,. \_ 4 i
E(smx) = cos x and dx(coxx)z sinx

Let y=usinx Then y+oy = sin (x+5x)

and oy =sin(x+5x)—sin X

xX+o0x+x) . ([ x+0x—x ox) . [ox
=2 cos sin = 2cos| x — |sin| —
2 2 2 2
ox) . [Ox [ ox
2 cos| x+— | sin| — sin| —
oy _ 2 _\ 2 “os (x Qj—z
2

Sx ox ox
2

Ox—0 5_x 6x—0

version: 1.1
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. [ Ox
Sx S’”(zj SLANNY
=Him cos(x 7) (Slim— "2

§—>0 2250 ox
2 B3 whenox — 0
. OXx
dy . Sx ' sm7
Thus —=cosxH.|" #m coss x — | cosx and I[im 1
dx 5x/20 2 5x/250  OX
2
Let y=cosx, theny+5y:cos(x+5x)
and Oy =cos(x+5x)—cosx
=COSXCOSOX — SINXSINOX — COS X
) . (l—cosé‘x)
= S$inxsindx cosx| ————
ox
oy . sin ox (l—cosé'xj
—=( sznx). cos x| ————
ox ox ox
limﬁzﬁm ( sinx)szn&x cosx(—l_COS5xj
o0x—0 5_x ox—0 5_)(; 5_)(
} ) SiInox ) 1—cosox
= lim (—smx) —Ilim| —cos x| ———
530 ox 530 ox
p b{imo Sl’;é‘y =land
Thus & =( sz'ﬂx).l (cosx)(O) x
dx . (1—=cox ox
lim| ——— |[=0
5x—0 ox
or —(cosx)=—-sinx
- (cos x)

Now using d—(sin x) =cosx and d—(cos x): — sinx, we prove that
X X

— (secx) ==ec xtanx and i (cot x) cosec’ x
dx dx

version: 1.1
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Proof of di (sec x) = secx tanx.
X

1
cos x

(i)

Let y=secx=

Differentiating (i) w.r.t. ‘x’, we have

J J 1 [;’i(l)}cosx—l.gc(cosx) Usin.g
—(y)=— = . quotient
dx dx| cos x (cosx)
formula
B O.cosx—l.(—sinx)
- cos’ x
1 sSinx
== . secx tanx
COSX COSX
Thus i(secx) = sec x tan x
dx
d )
Proof of —(cotx) = cosec” x
dx
Let y=cotx = C?S al (i)
sin x
Differentiating (i) w.r.t. ‘x’, we get
[d (cosx)}sinx—cosxd(sinx) Using
d d | cos x dx dx .
—(y)=—|— 1= . quotient
dx dx| sin x (sinx)
formula

(—Sin x)sinx —Cos x(cos x)

sin’ x
.2 2
—(szn X + cos x) 1 5
= — =< = — cosec” x
sin” x sin” x

Thus i(cotx) = cosec’ x
dx

version: 1.1
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Now we write the derivatives of six trigonometric functions

1 —(si = 2y — — of
( ) dx(Sll’lx) cos X ( ) Ix (COS)C) Sinx
(3) i(tanx) = sec” x (4) i(cotx) = — cosec’ x
dx dx
(5) E(COS@CX) =—cosecx cotx (6) E(S@CX) =secx tanx
Example 1: Find the derivative of tan x from first principle.

Solution: Let y=tanx, then 4y &x tanfx 6x) and

0y = y+0ox—y =tan (x+5x)—tanx

B sin(x+5x) _sinx _ Sin(x+5x)cosx—cos(x+5x)sinx

B cos(x+ 5x) cosx cos(x+ 5x) cos X

_sin(x+5x—x) Sinox

_cos(x + 5x).cosx cos(x + 5x) coS X

oy 1 sinox

Sx cos(x+5x).cosx' ox

.oy . 1 . [ sinox
or Ilim——=I[im im
6x=0 §x x>0 cos(x + 5x).cosx sx=0\  Ox

 lim cos(x + §x) =cos X

Thus d_y == ! 1 sec” x e
dx (cos x)(cos x)' and lim 22 ox =1
5x>0 Sx
d
Thus Y _ sec’ x or —(tan x) = sec’ x
dx dx

version: 1.1
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Example 2: Differientiate ab-initio w.r.t. “x"

(i) cos 2x (i) sin/x

(i) cot’ x

Solution: (i) Let y=cos2x, then y+Jy=cos2(x+6x)
and 5y:cos(2x+25x)—cos2x

= 2sin 2x+20x+2x sin 2x+ 2§x —2x = 2+Sin(2x 5x)sin ox
Now Q = 2|-Sil’l(2)€ 5x). sinox
ox ox
Thus Q = lim[ 2sin(%x 5x).sm 5)1
dx ox—0 5_x

= 2lim (sian 5x).lim Sinox
3x—0 x>0 Sx

-=( 2Sin—2p).1 2sin 2x(

5x-0  Sx
(i) Lety =#win~/x, then y+Oy=sinVx Ox

and oOy=sinx+0x — sin/x

Sin

zzco{x/x+5x+\/;j E\/x+5x—\/;}
2 2

As (\/x+5x+\/;)(x/x+§x— x):(x+5x)—x:§x,

<in \/x+5x—\/;
oy Jx+8x ++/x 2
So —=—=2cos )
ox 2 ox
(\/x+5x+\/;] . [\/x+5x—\/;}
2cos 5 sin 5

(\/x+5x +\/;)(\/x+5x —\/;)

(gimosin(2x + 5x) =sin2x and lim Sinox 1]:

version: 1.1

2. Differentiation

elLearn.Punjab

n

COS[x/x+5x+\/;J ¢ (\/x+5x—\/;)
2 2

Jx+6x ++/x Jx+6x —x

2
Cosx/x+5x+\/; lim sin[ x+52x—\/;]

dy ) 2
Thus — =-Hm | _ 0

dx o0l fx+x++/x x+0x —x Jx+6x —Jx

2 2

cos\/;_i_\/; \/x+5x—\/;
dy _ 2 | cos Jx 5 — Owhen
d \/;JM/; | 2\/; ox—0

(iii) Let y = cot’x, then
y + 6y =cot’(x+6x)

Sy = cot’(x+6x)—cot’x = [cot (x+6x)+cot x] X [(ﬂet (x—6x) cot x]

sin(x + 6x) sinx

=[cot (x+6x)+cotx] .[COS(X +0x) CO”J

_[cot (x+5x)+cotx] y SinXCOS(x+5x)—cosxsin(x+5x)

sin(x+ 5x)sinx
Sy _[cot (x+3x)+cotx | —sindx sinxcos(x +6x)—cos xsin(x + 6x)
ox Sin(x+5x)sinx C Ox :sin(x—(x+5x))=Sin(—5x)=—sin5x

i Q:—lim co.t (x+5x)+(fotx.( 1)sin5x
5x>0 §x  ox-0(  sin (x+ 5x) sinx o

X
dy  cotx+cotx giziocot (x+6x)=cotx
Thus —=——"-/(1).1
dx Sinxsinx and lim sin(x+5x) =sinx
2 t Oox—0
—2cot x
=———.1=-2cotx co sec’ x
sin” x

version: 1.1
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Example 3: Differentiate sin’ x w.r.t. cos’ x

Solution: Let y=sin’x and u cos’x

Now ﬂ:_%sinzxcosx and ﬂ —2cosx( sinx)
dx dx
Thus Q:Q.@:(%inzxcosx).; ﬁ L
du dx du —2cos xsinx du dx
du
=——gsinx.
2

2.9 DERIVATIVES OF INVERSE
TRIGONOMETRIC FUNCTIONS

Here we want to prove that

dr . _ 1

1. E[smlx]: — xe(—l,l) or —l<x<l

2. i[(m—l)c]:— L xe(-1,1) or —1<x<I1
dx 1-x7 ,
d B 1

3. E[Tan lx}z L XER

4, i[Cosec_lx}:—;, xe[—l,1]',[—1,1]':(—00,—1)u(
dx | x|Vx? =1

5. i[Seclx}=—;, xe[-L 1], [-1,1] = (=0~ 1) U(
dx |x|Vx* =1 AR ’
Al o]

6. dx[Cot x]— . x€R

Proof of (1). Let y=Sin"'x ().

)

)
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Then x=Smg er x siny for y [ %%} (if)

Differentiating both sides of (ii) w.r.t. ‘x’, we get

1= %(sin y) = %(Sin y)% = cos y%

Proof of (2). Let y=Cos 'x (i)
Then x=€osy or x cosy for y [0, 7] (i)

Differentiating both sides of (ii) w.r.t. ‘x’, gives

Lot
dy 1
ey _ 0,
dx siny Jor ye( 7[)

B 1

= [ siny is positive for y e (072')]
\J1—cos” y

Thus i(Cos‘]x) =—
dx 1-x°

for 4 <« <
Proof of (3). Let y =Tan'x (i).

Then x=Tany or x=tamy for vy ( E,EJ (if)

Differentiating both sides of (ii) w.r.t. ‘x’, we have

version: 1.1
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d d dy , dy
l=—I(tany)=—-I(tany)—=sec” y—
dx( y) dx( y)dx ya’x
= & = —6—12— for y ( z,zj
dx  sec”y 22
= 1 _ for xeR
l+tan®y 1+x°
d 4 1
Thus E[Tan x} 261? for x R
Proof of (4). Let y=Cosec™ x (i)
Then x=CGoseey-or x cesecy for y [ %,%} {O} (ii)

[_ﬁ,ﬁ} —{0} is also written as {—%O} U [0%}

2 2

Differentiating both sides of (ii) w.r.t. ‘x’, we get

4 4 Y
= (cosec y) n (cosec y) I
_(_ Y
—( cosecycoty)dx
dy 1 T
2 - - Z Z|-fo
= dx cosec ycoty Jor ¥ E[ 2’2} { }

When ye(o,%j , cosecy and coty are positive.

As  cosecy=x,S0 x is positive in this case

and coty = \/coseczy—l =Jx*-1  forall x>1

d -1
Thus —(Cosec™ x ) =>——— for x 1
( )=

dx
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When ye (—%,Oj,cosec yandcot y arenegative

As cosecy =x, so x 1s negative in this case

and cot y =—Jcosec’ y—1=—/x> -1

-1

when x < -1

Thusi[(fosec_1 x] — (x 1)

)

d

—[cosec_l x} = —;
dx | x| \/ﬁ

Proof of (5). is left as an exercise
Proof of (6). is similar to that of (4)

Find Ll if
d.

Example 1:
X

y=xS8in _l(ﬁj ++a® +x’

a

Solution: Giventhat y =xSin™ (£] ++a® +x’

a

Differentiating w.r.t. x, we have

dy d . X 2 2_ d|: -—1x} d g, 2\2
—=—/|x8in —+~Na +x" |=—|xSin" —|+—(a" +x
dx dx[ a 1 dx a dx( )
1 d({x) 1 ad
—1.8in" 24 x. — ) —a® X)) —la® X
a (XJZ dx\a) 2 Qa ) dxea )
1| &

version: 1.1
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1 1 1
Sin_1£+x —+ A—2x
a /1_ x> a 2a'-x° ( )
2
a

—1 =Sin™" al

X a 1
n e T ”
a a —x" d a —x a

Si

4(1+ y*
Example 2: If yzrtan(ZTan_lg),showthatﬂ M

dx 4 + x*

Solution: Let u=2 Tan_lg, then

d
y = tanu:>d—y = sec’u = l+tan*u=1+y"
u

and %:i(kﬂzn_lg) 2. ! ;i(ij 2 1 4

x  dx (sz dx\ 2 22 4+
1+| = I+—
2
4(1+y?
Thus +2 B A2y 4 ( {)
dx du dx 4+ x 4+ x

1.  Differentiate the following trigonometric functions from the first principle,
(i) sin x (i)  tan3x (iii)  sin2x+cos2x (iv) cosx®

(V)  tan’x (Vi) tanx (vil) cos Jx

2. Differentiate the following w.r.t. the variable involved

(i) x’ secdx (i)  tan’ Osec’ 6
(iii) (sin2¢9—cos3¢9)2 (iv) cosvx ++/sinx

(=)
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10.

1.

12.

Find 2 if
dx
(i) Y=XCosy (i) x=ysiny

Find the derivative w.r.t. x

. 1+x .. 14+ 2x
(i)  cos (i)  sin
1+2x 1+x

Differentiate

(i) sinx w.rt. cotx (i)  sin*xwrt. cos'x
dy
If tan y(1+tanx)=1 tan x,show that7: 1
X
dy 2
If y:\/tanx+\/tanx+\/tanx +...00,prove that—(2y I%d_ sec” x.
X
3 .3 dy
If x= acos 0, y=bsin” 0, show that ad—z btand 0
X
. dy. : :
Find d—lf X= a(cos t+ sin t), y= a(sm t—t cos t)
X
Differentiate w.r.t. x
: . 1
(i) Cos'X (i) Cor'Z (i) —sin'2
a a a X

(iv) Sin'V1-x
_ 2
(vii) COS_IG xz}

@ _y if L=
dx x X

x -1

It yztan(%pTan_lﬁe),shebwthai (1 xz)y1 p(l yz) 0

v) Sec‘1£x2+1] (vi) Cot_l(lzx

=)
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210 DERIVATIVE OF EXPONENTIAL FUNCTIONS:

A function f defined by

f(x)=a'

a>0,a#land x is any real number.
is called an exponential function

If a=e ,then y=a" becomes y=e¢".¢" is called the natural exponential function.

Now we find derivatives of ¢* and a* from the first principle:
1. Let y=e¢" then

X+0x X+0x X X _Ox X

y+oy=e""and oy=y+0y—y=e"" —e" =¢e".e" —e

ox _ ox _
Thus lim Q ==lim ex(e lj e . lim (e 1]
3x>0 Sx 5x—0 ox Sx—0 ox

lim N
e =e¢
ox—0

h
& =2 1[Usmg lim & _ IJ

dx h—0 h

or a(ex) =e

2. Let y =a" ,then

y+5y:ax+5x and 5y :ax+5x_ax:ax'aﬁx_ax:ax(aﬁx_l)

Dividing both sides by ox , we have
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h_
:ax.(lna)(Usmg lim a_~1 +og*, lnaJ

h—0 h

or i(ax) = ax.(ln a)

Example 1: Find % if:(q) y=e'" (i) y=a
X

Solution: (i)Let u=x>+1, then
" du d
y =€ (A) and Eza(x2+l)=2x

Differentiating both sides of (A) w.r.t. 'x', we have

(Using the chain rule)

Thusdy o (2) ('—l—'u 52 I:emdﬂ 2xj
dx o
(i) Letu==/x Then y a" (4)
and @:i(xlﬂ):lx—l/z 1

AN

Differentiating both sides of (A) w.r.t. ', gives

dx dx

@:i(au):d< )d_ii (Q ﬂ@j
dx dx du 7 dx Cdx du dx
—:%a In a)j— (Using%(ax) a* In aj
d | & " 1 - du 1
ThU.S E(af)=(a[lna).ﬁ = (u Xaﬂda ﬁ

|

=)
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_Ina e 1
2 Jx
Example 2: Differentiate y=a" w.r.t. x.

Solution: Here y =a"

xIlna
=e

Differentiating w.r.t. ‘x *, we have

Q:ema ,i(xln a)
dx dx
=" .(In a) ( e’ qt

== .(In a) ( e e ax)

2.11 DERIVATIVE OF THE LOGARITHMIC FUNCTION

Logarithmic Function:

If a>0 a#1 and x=a , then the function defind by

y =Y¥og’ (x O)
is called the logarithm of x to the base a.

The logarithmic functions log,” and log",, are called natural and common logarithms

respectively, y =log* is written as y=1In x.

We first find i(In x).
dx

Let y=Inx Then
y+6y=In(x+6x) and

5y=1n(x+§x)—lnx:(x+5xj=1n(l+

X

ox

X

)
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55)6 X

= li In (1 + ﬁ) = lln (1 + ﬁjax
X Ox X X X

Thus limﬁz lim lln(1+§jax :llim ln(1+ﬁj&

ox—0 5x ox—0| x X X 0x—0 X

Now 5y:i1n (l+ﬁj

D _L ol im (1 ﬁj‘?x

dx x O o X
X

( Q — 0 when 6x — Oj

X
lim 1
:llne { (1+2)- =e}
X z—>0
=—1=— =(log° 1
= (wlogs 1)
Now we find derivative of the general logarithmic function.
Let y=Ilog "~ then
y+5y:loga(x+5x) and

Sy =log, (x+dx)—log,” :log(x+§x):loga (1+&j
X

X
Q:Lloga (1+ﬁj:l.iloga(l+ﬁJ
ox Ox X X Ox X

= lloga (1 + ﬁj&
X

X

X

Thus & = lim lloga(l+ﬁj§x =llim loga(prﬁ)gx

dx ox—=>0| x X X 0x—0 X

lim x
1 ox \ox
=+log, | 5x 1 —
X — X
X 50

&)
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1 x N l_
_;loga (.éz_izg(l+z) —ej
d 1 1 1 1
or—|log*| =— .— ‘Hog ¢ = —
dx[ g“] x Ina ( 8a log, In a]

Example 1: Find%ify:logm(ax2 +bx+c)
x

Solution: Let u=ax*+bx+c Then

d 1 1
:Z u _—
acil :>du u Inl10
and ﬂ:i(ax +bx+c):a(2x)+b(l):2ax+b
dx dx

u Inl10) dx

dx du dx
1
- I(axz + bx+c) In10 (2ax b)
or %[bgw(axz +bx+c)] = 2ax+h

(ax’ +bx+c)In 10

Example 2: Differentiate In (x2 + 2x) w.rt.'x'.

Solution: Let  y=In(x"+2x), then

% = di[ln(x2 + Zx)J = ﬁ.di(x2 + 2x) (Using chain rule)
dx x> +2x) dx
1 2 1
B x*+2x .(2x " 2) - x(;:;x)
d 2(x+1
Thus —x[ln(x2 + 2x)] = xgx+ 2x)
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212 LOGARITHMIC DIFFERENTIATION

Algebraic expressions consisting of product, quotient and powers can be often
simplified before differentiation by taking logarithm.

Example 1: Differentiate y=e¢’") w.r.t.'x"

Solution: Here y=¢'"" (i)

Taking logarithm of both sides of (i), we have

Inyzf(x).Ine

= f(x) (vIne=1)
Differentiating w.r.t x, we get
Ldy_
y dx / (x)
d (x ,
So d—ix:y fé(x) &) f (x)

d

or a(ef(x))zef(x) x f'(x)

VXt +3

) .. X
Find derivative of >
x +1

Example 2:

/ 2
Solution: Let y =2YT +3

Taking logarithm of both sides, we have

WX +3
Iny=In| ———

x +1

or In y=In x+%ln(x2+3)—ln(x2+1)

Differentiating both sides of (ii) w.r.t "x’,

> len(xm) —1n(x2+1)

version: 1.1
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; J 1 2.13 DERIVATIVE OF HYPERBOLIC FUNCTIONS
— 2 2
E[Iny] —E{Inx+51n(x +3)—In(x +1)} iy | N
L dy L1 . e functions defined by:
Ve x 2 e e : :
y X _ X X
Sinhx:e ¢ ,xeR;coshxze re xeR
l X 2x
x x*+3 x*+1 . X -x
tanh x = sinh x = ex e_x JXER
(x2+3 (x2+1)+x.x(x2+1)—2x.x(x2+3) coshx e +e
x(x?+3)(x" +1) are called hyperbolic functions.
Ayt 13 vt = 2xt — 62 3 %2 The reciprocals of these three functions are defined as:
- 2 +3)(x* +1 2 +3)(x* +1
x(x )(x ) x(x )(x ) cosech x= L xeR—{O}'
dy y(3—x2) Nt +3 3— 2 sinhx e —e ™’ ’
Thus x(FH)(F 1) Pl x(F+3)(F +1) 1 2
X X X X sech x = = —,Xx€R
coshx e +e”
2 X —Xx
= 3-% - coth = ! :ex+e_x , xeR—{0}
X +3. x2+1) tanhx e —e
Derivatives of sin h x, cos h x and tan h x are found as explained below:
Example 3: Differentiate (Inx)" w.r.t. 'x'. J a1 1 1
_x(Smhx):E[E(e —e )}zi[e —e (—1)] =5(€ +e )=coshx
Solution: Let y=(Inx) (i)
Taking logarithm of both sides of (i), we have i(wsh x):i[l(ex +eX)} :l[ex P _(_1)] :l(ex —e*x):sinh x
dx dx| 2 2 2
Iny=|(Inx) | xIn(Inx)
[ } _— _d|e-et (ex+e_x)(ex+e_x)—(ex—e_x)(e"—e_x)
Differentiating w.r.t x, a[ ank x] Tdd e e (e +e_x)2
2x+ —2x+2_ 2x+ —2x_2
LDy (i) +x —— 4 (nx) _&te (e e ) 4 2
y dx Inx dx (e’“+e‘x) (ex+e—x)
11 2 Y
:In(Inx)+x.—.—:In(Inx)+— :( . _x) =sech’ x.
Inx x nx e +e
d—y:y{ln(ln x)+L } ~(In x) {In(ln x)+ 1 } The following results can easily be proved.
dx In x In x
version: 1.1 version: 1.1
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— (cos eh x) = coth xcosech x ; i (Sech x% tanh x sech x
dx dx
— (coth x) = —cosech® x.
dx
. . dy . )
Example 1: Find e if y=sinh2x
X

Solution: Let u=2x, then

y=sinhu :d—y:coshu
du
a -9 (222
dx dx
ThuSQ:ﬂ.ﬂ =coshu.@=[cosh (2x)].2=2cosh 2x
dx du dx dx

or i [Sinh 2x] =2cosh2x.
dx
Example 2: Find d—yif y:tanh(xz)
dx

Solution: Let u =x*,then y=tanh u :j—y =sech’ u
u

du d
dE :5(x )=2x

Thus dy ﬂﬂ Sechzu.@:[sechz(xz)] 2x
dx du dx dx

or i[z‘anh sz = 2x sech® x*
dx

version: 1.1
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214 DERIVATIVES OF THE INVERSE

HYPERBOLIC FUNCTIONS:

The inverse hyperbolic functions are defined by:

y=sinh Se ifandif x sinhy ; x,y R

y= cosh™' x if amd onlyifx coshyowo,; x [b,o ),y [O, ]]
y= tanh™ x if andkonly if x etanhy ; x ( 1, 1),y R
y=coth™ x ifané&onlyifx eothy ; x [ 1, 1],,y R {O}
y=secd ' x if amd onky if x=sechy ;x (0, 1‘] y [O )

y=cosech”'x ifandonlyif x cosecky ;x R —{O} y R {O}
The following two equations can easily be derived:

(i) sinh™ x = In (x+m) (ii) cosh™ x= In()er M)

Proof of (i).
Let y=ainh™' x for x,y R, then

o vk W=

y e‘)’

x=sinhy=x=

= 2xe’ =e* —1
or e —2xe’—1=0

Solving the above equation for e* , we have

o = 2x+\/4x2 +4
x+2\/x +1

X+

As e’ is positivefor y € R, so we discard

x—x*+1
Thus e’ =x++/x” +1 :>y=]n(x+\/x2+1)

version: 1.1
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= sinh x=1In (x+\/x2 +1)
Proof of (ii)
Let y = cosh™ x for x e [1, ), ye [O, €), then

el +e”’

X =cosh y= x= =e’—2e"+1=0 .. (I)

Solivng (I) gives, e’ = 5

e’ =x—+/x" —1 can be written as y =In (x \7[x2 1}

If x=1,then y=In (1-\I=T)=1n (1)=0 but

In (x —\Jx - 1) 1s negative for all x > 1, that is

for each x e (1,00), Ve (0,00),50 we discard this value of e”
Thuse’ =x + m which give y=1In (x + \/ﬁ) , that is
cosh™ x :In(x+ \/ﬁ ) .
Derivative of sinh™' x:

Let y=ainh" x ; x,y R

Then x = sinh y

@—cosh :d_y_ L L1
dy 4 dx coshy Cdx  dx
dy
dy 1 1
or —= = > wcoshy O
dx coshy |1+ sinh® y ( )
Q::i (esinh_1 x) ! (x R)
dx dx 1+ x>

+/4x? - +24/x% —
2x £N4x 4:2x_22x I:xi\/ﬁ.

Derivative of cosh™' x:

Let y =cosh ox; € xoe[l ),y [O, )

Then x =cosh y

andﬁ:sinhy :>d—y: I = d_y 1
dy dx sinhy dx dx
dy

or ﬂ: ! ! ('.’sinhy> O,asy>0)

dx  sinhy - Jcosh® y—1

(x 1)
As cosh™ x=1In (x+ \/xz —1),50

i[cosh_l x} = 1 1+ 2 = 1 : =
dx x+\/x2—1 2\/x2—1 x+\/x2—1 x* -1 \/xz—l

Derivative of tanh™ x:

Lety=tanh™ x; xe(-11), yeR

Then x =tanh y and @=S€Ch2:> v ;2 :d_y 1
dy dx sech” y dx dx
dy

d 1 1
d_i: 1 — tanh’ y: 1-x° ('.'Sech%y— L anh® y)

Thus i(l‘anh_l x) :/;2 ;. -1<x<lor |x| 1
dx 1-x

The following differentiation formulae can be easily proved.

d _
—x(coth 1x) :1—1x2 or _xz—

R |x| >1

version: 1.1
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i(sechfl x): — ! ; 0 <« 4
X xV1—x

i(ceﬁvech_1 x): 91—;x 0

dx v+ x?

d 4 1
or—(cosech” x)= ———— x & 30
dx( ) x| V1+x? 10
E le 1: . @ IR
Xample 1: Fmdd if y=sinh (ax+b)
X
Solution: Let u=ax+5, then
y = sinh™u :>d—y N
dx 1+u®
Q_Q du 1 du

dx du dx 14y dx

d 1 du d
Thus — | sinh™ (ax + b) = .a ('.‘:— —(ax = b) a)
dx[ \/lJr(aerb)2 dx dx

Find @ ify:cosh_i(sec x) 0 x #n/2

Example 2:
dx

Solution: Let u=secx, then

=cosh™ u :ﬂ— !
g dx Ju® =1
andﬂ:i(sec x) =secx tanx
dx dx
Thusﬂ _ & du_ du

dx _du'dx_«/l,ﬂ_l dx

1 1
=——==(secx tanx )
\Jsec x tan x

d -
or g[cosh ! (secx)} = secx

(Ser tan X) sec X

version: 1.1
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i) f(x) =™
(iv) f(x):e_f:_l

(Vi)  f(x)= \/ln (ezx N e’zx)

2. Find & if

dx

(i) y=x Inx

(iv) y=x lnl
X

(Vi) y=in(9-x)

(X) y :xesinx
(xiii) y=(lnx)""

3. Find @ if

dx

(i) y=cosh2x

(i)  y= taﬂh_lfsin:x)

(V) y= ln(tanh x)

NN

(i)

(V)

(viii)

1

f(x)zx3 e* (x;tO)
In (ex + e*x)

f(x)=In (\/ez" +e )

(i)  y=xyn x

x* =1

x+1

(V)  y=n

(viii) y=e™" sin 2x

(xi) y=5&""
(xiv) y= sz—l();::l)
(x3 +1)

(i)  y= sinh3x

(iv) y=sinh™ (x3)

. o x
(Vi)  y=sinh (EJ

(i)  f(x)=e"(I+inx)

Vi) =S

e +e
X
(iii) y=1-
(i) y=in (x+\/x2+1)
(ix) y=e™ (x3 +2x7 +1)
(xii) y= x+1)x

version: 1.1



2. Differentiation elLearn.Punjab

215  SUCCESSIVE DIFFERENTIATION
(OR HIGHER DERIVATIVES):

Sometimes it is useful to find the differential coefficient of a derived function. If we
denote f’ as the first derivative of f, then (f)"is the derivative of f“and is called the second
derivative of f.For convenience we write it as f”.

Similarly (f 7). the derivative of f ”, is called the third derivative of f and is written as f ”.

In general, for n >4, the nth derivative of fis written as 1.
Here we state different notations used for derivatives of higher orders..

1st derivative | 2nd derivative | 3rd derivative | nth derivative
y ’ y ” y V4 y n)
d d’y d’y d"y
dx dx’ dx’ dx”
Y Y, Y3 Ya
2 D D b
a d’f d’f a'f
dx dx2 dx3 dx"
Example 1: Find higher derivatives of the polynomial
f(x)=%x4 —%x3 +ix2 +2x+7

Solution: f'(x) :%(4)63) —%(3)62) +%(2x) +2 +O:%x3 —%xz +%x+2

1 2 1 1 5 1
f”(x)=§(3x )—E(ZX)+§(1)+O=x —x+E
f”’(x)=2x—1
fiv (x):2

All other higher derivatives are zero.

2. Differentiation
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version: 1.1

3
Example 2: Find Z’fif y=In (x+\/x2 +a2)
X

Solution: Give that y=1In (x+\/x2 +a2) (i)

Differentiating both sides of (i) w.r.t. ‘x*, we have

dy 1 i( 7

x
dx x+j}x2+a2 dx

. 1 | 1x2x
x+\/x2 +a’ ' 2. x*+a’
_ 1 [\/x2+a2 +xJ

x+\/)c2+a2 2\/xz+a2

o dy 1 .
That is, - _\/m (i)

Differentiating (ii) w.r.t. ‘x’, we have

dy i[(x%raz%m} =+ %(xzx 012)73/2 2x

dx’ :dx

d2y
or 2 T - 32 (iii)

dx (x2 + az)

Differentiating (iii) w.r.t. ‘x", we get

1.(x2 +az)3/2 —x.;(x2 +a2)1/2.2x

d’y
& Fva)”]
(2+a) [(Fra)-3¢] oy
(2 +a) (cra)”
-

version: 1.1
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2
Example 3: Find Z J; if y +3ax’+x*=0
X
Solution: Given that y’ +3ax> +x’ =0 (i)

Differentiating both sides of (i) w.r.t. ‘x*, gives

d d
E[y3+3ax2+x3} =$(0) =0

dy dy
3" = +3a(2x)+3x* =0 =3 == (2 2
ydx a(x) b ydx (axx)
2
SN S S ()
dx y

Differentiating both sides of (ii) w.r.t. ‘x*, gives

2 2 Q
4’y :( l)i{Zax+x2_| (2a+2x)y_(2ax+x )(2ydx)

dx y? J _(y2 )2

) ’ 2ax + x*
2(a+x)y —(2ax+x ).2y>{—2j
Yy

4

Y

2[(a+x)y2 . (2ax+x2)(2ax+x2)}

y

4

Y
2[(a+x) y’ +(2ax+x2)1
Y.y
_ 2[(a+x)(—3ax2—x3)+x2(2a+x)2} (0:73: o’ x})

5

Yy
a+ x)(3a + x) + (4a2 +x? + 4ax):|

2x*

[
yS
2x° [—(3a2 + 4dax + xz) +4a® +x* + 4ax]

y y

version: 1.1
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Example 1: If x=a(6 sin@%y a(l cosd). Then

dzy

2
X

show that »? +a=0

Solution: Given that x = a(6+sind)
and y=a(l+cosb)
Differentiating (i) and (ii) w.r.t'6’, we get

dx

a’_@ = a(l+cos€)

and @ _ a(—sin@)
do

dy
Using P :ﬂ.ﬁz 40 e have
dx do dx  dx
de
—asinf —sin 6

_:a(1+cos 0) 1+cos6

That is, & = — S0
dx 1+ cosé@

Differentiating (v) w.r.t. ‘x’
d’y d [ sin@ d ( sin@ | do
dx®  dx 1+cos 6 dO\ 1+cos @ ) dx

cos 6(1+ cos @) —sin &(—sin ) do

(1+cos 6’)2 " dx
d’y  cos O+cos’ O+sin’0 do
x> (1+cos 49)2 “dx
_ _1+cosd 1 [ L dx
(1+cos @)’ a(1+cos0) do

(i)

(iii)
(iv)

version: 1.1
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. Lt y
a (1+cos 8)’ a(yjz (.'.1+C059:;j
a
_ Ll a_ a
a y
d2
or 2# —a =32 a =0
Example 5: Find the first four derivatives of cos (ax +5).

Solution: Let y=cos(ax+b5), then

3 == [cos (av+b)]= sin(ax b).4- (ax )
— —sin(ax +b)x(a+0)=—asin (ax+b)
y, ==a-sin (@r+b)] = (~a) [cos (@ +5)x (a+0)]
= #cos(ax b)
- QZ%[COS (ax+b)]=(~a*)[~sin(ax+b)x(a+0)]

=a’ sin (ax +b)

y,=a’ di[sin (ax+ b) | a% [cos(axt b) Kk a= a* cos (ax+ b)
x

3
Example 6: If y =e ™ + thensshow that Z’); ay 0
x
H . —ax dy_ d —ax \ _ —ax d __—ax
Solution: As y=e™, so 5—5(6 )_e .a(—ax)—e ( a)
. dy _
Thatis —=-a et =
=y (e =)

version: 1.1
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dx| dx dx dx? dx
dy :
or =q I
72 y (1)

Differentiating (i) w.r.t. ‘x ‘ we get

ddzy_d 2 d3)’_ 2dJ’_2 3
Wl e e o) @

3

Thus f{x); +a’y=0

Example 7: If y=Sin"' >, then show that v, ﬁc(a2 x’ )
a

. .o X
Solution: y=sin"=, so
a

= — 1 —_

— &)

dx dx a )’ dx\ a
- %
2]

d d| .. X
J’1__y l:|

version: 1.1
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1.  Find y, if
(i) y=2x" =3x*+4x’ +x-2 (i) y:(2x+5)3/2 (iii) y:\/;+L
Jx
2. Find y, if
. . 2x+3
| =xl e i =1
() y=x.e (i) y n(3x+2j
3. Find y, if
(i) xX*+y'=d (i) x-y'=a (iii) x=acosh,y=asinb
(iv) x=at’, y=>bt* (V) X+ +2gx+2f/+c=0
4. Find y, if
(i) y =sin 3x (i)  y=cos’x (iii) yzln(x2—9)

5. If x=Sin 6,y = Sin mf, Shew thatfl x%)y2 =y, m'y 0

2

6. Ifyzexsirnx,sherwthatd); 2Q 2y 0
dx dx

d’y d
E ad—i (a2 bz)y 0

8. Ify :(C—os’1 x) —prove that (1 xz)y2 xy, 2 0

7. If y=e™ sin bx, shew that

2
9. Ify=acos(Inx)+bsin(Inx), prove that XZ%H%W:O,
X X

216  SERIES EXPANSIONS OF FUNCTIONS

A series of the form q, +ax+a,x’ +a,x’ +a,x* +.....+ax" +... is called a power series

expansion of a function f(x)where a,,4,,a,,...
We determine the coefficient «,,a,,qa,,....a,,..
successive derivatives of the power series and evaluating them at x=0. That is,

a,,.. are constants and x is a variable.
to specify power series by finding

version: 1.1
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f(x) = a,+ax+a,x +ax +ax* +ax’ +... +ax" +.. f(O) =a,
f(x) = a, +2a,x +3a,x" +4a,x’ +S5ax" + ... +nax"'+...f (0) =q,
f(x) =2a, +6a,x +12a,x* +20a;x° + ...+ n(n—1)a,x"> +... f (0) =2aq,
f”'(x)z 6a, +24a,x +60a.x’ +.... " (()) = 6a,
S (x)= 24a, +120a.x ........ r9(0)=24a,
So we have 4, = 1(0), 4,= £ (0).a, _SO) () _ (o)

Thus substituting these values in the power series, we have

, (0 "(0 @ (0
f(x):f(0)+f(0)x+f2(! )x2+f3s )x3+f4§ )x4+....+ py

This expansion of f(x) is called the Maclaurin series expansion.
The above expansion is also named as Maclaurin’s Theorem and can be stated as:
If f(x) is expanded in ascending powers of x as an infinite series, then
g @)
£(0) 2, 170 o, /Y0

X +...+
2! 3/ 4/ n

/! (O) X"+

F(x)=1(0)+7(0)x+

Note that a function fcan be expanded in the Maclaurin series if the function is defined
in the interval containing 0 and its derivatives exist at x=0.
The expansion is only valid if it is convergent.

1
1+ x

Example 1: in the Maclaurin series.

Expand r(x)=

Solution: fis defined at x=#6that is, £(0) 1. Now we find successive derivatives of f and
their values at x=0.

f(x)=(- 1)(1+x) and £ (0)=
S (x) =(=1)(-2) (1+x) " and f"(0 ) D2
S (%) =(=1)(-2) (-3)(1+x) " and f7(0) € H[3

()

version: 1.1
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S (x) =(-1)(-2) (-3)(=4)(1+x)"and /¥ (0) € B'|4

Following the pattern, we can write ) (0)=(-1)"|n
Now substituting f{0)=1, r40)= 1/°(0) ( 1)’[2.

_ (et (O 2 S7O) o S0 L S(0)
f(x) —f(0)+f (O)x+ 2 x°+ B X+ Iﬂl X —...Tx
(n)
+f (O)x"+,...we have
|n
e (e ey By e DR
. =1+(-1)x+(-1) sz +(-1) |§x +(-1) Iﬁx ..+ n X"+
Thus, the Maclaurin series for IL is the geometric series with the first term 1 and
+ x

common ratio —x.

Note: Applying the formula s

l—x+x,—x;+...

Example 2: Find the Maclaurin series for sin x

Solution: Let f(x)=sinx.Then#(0) =in0 O.

f,(x):cosxandf'(O)ECOSOZI;f”Gx)z sinxand [

(0)

sin0 O,

S (x)==cosxand " (0) =—os 0 =—1;f(4)(x):—( —sin x) =-sin x

and f(4)(0)=sin (0)=o0.
f(s) =(x) =cos x and f(S)(O)z cos 0= 1, f(6) (x}— sinx

ané f(6) (O) =0 ,'f(7) cos x and f(7) (0) 1
Putting these values in the formula

version: 1.1
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f(x)zf(0)+f'(0)x+T0x+ Dy L0 L

. 0 »
sinx=0 +.x —x —x —x —+Xx

2 B 1 [ 6 7

Example 3: Expand a* in the Maclaurin series.

Solution: Ler f(x)=a",then
J ()= b, () @ (ma) S (x) @ (na)
f(4)(x) ==a"(ln a)4, f(")(x) a’ (ln a)(n).
Putting x=0in f(x), £ (x), /" (x), £ (x), fD(x), ... (), we get

f(O)zaO =1,f'(0):a°lna=ln a,f”(O):(ln a)z,f”'(O) (lna )3

f(4)(0) =£In a)4 AL (0) (lna)".
Substituting these values in the formula

f(x) :f(0)+ S r(o)x+f'é0) X%+ flé(O) x4 4%)6" +...,we have
a’ :1+(lna ).x+(lnlza)2 x2+(lnléa)3 X +m+—(lnlﬁa) x"

Note: If we put a = e in the above expansion, we get

xl x3 xn
+—+...+—+...

2 3 |n

Replacing x by 1, we have

e =l+x+

e=1+1+i+l+...+i

2 B

version: 1.1
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Example 4: Expand (1 + x)"in the Maclaurin series.

Solution: Let f(x)=(1+x)", then
f'()c)=n(1+x)”_1 , S/ (x)=n(n-1) (1+x)n_2
/(%) =n(n—1)(n—2)(1+x)w3 ,f(4) (x)=n(n—-1)(n—2)(n —3)(l+x)"74
Putting x=0, we get
£(0) =(1+0) =1, £(0)=n(1+0)"" =n,
£7(0) =n(n-1)(1+0)"" =n(n-1)
£(0)=n(n-1)(n-2)(1+0)" =n(n—1)(n-2),
FP0)=n(n-1)(n-2)(n-3)(1+0)"" =n(n-1)(n-3)

Substituting these values in the formula

7(x) =/(0) 7 (O)x féo)-xz fﬁ(o)uﬁ ..., we have
(I+x)" 1 n+x n(nlg—l)%z n(n_lé(n_z)x3+..

217  TAILOR SERIES EXPANSIONS
OF FUNCTIONS:

If fis defined in the interval containing 'a’ and its derivatives of all orders exist at
x=a , then we can expand f(x) as

_ : / (a) . J (a) ;
f(x) = f(a)+ f'(a)(x—a) + 2 (x—a) + B (x—a)
A C) YR A C) YR
2 e )

Let f(x) = a0+a1(x—a)+a2(x—a)2+a3 (x—a)3+a4 (x—a)4+...
+a,(x—a) +...

Obviously f(a)=a, (- puttingx=a , all other terms vanish )

version: 1.1
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f’(‘x)#'al 2a2—(x +a) 3613—(X -ﬁ)z 4a4_(x _a)3+“. nan_(x a‘}n—l
n-2

f”(x) =2a, + 6013(36—a)+12a4(x—a)2 +..+ n(n —l)an (x—a) +...
f"(x)=6a,+24a,(x—a)+....

Putting x=a , we get f'(a)=a,; f"(a)=2a, =>a,= / I_ga);:f”’(a) 6a,
IO
3
()
Following the above pattern, we have fT(a)

Substituting the values of a,,q,,a,,q,,...., ,Wwe get

f(x) =f(a)+f’(a)(x—a)+f;(a)(x—a)2 ijL(a)(x—a)3 +..

2 3
(n)
+f (a)(x—a) +
|n
This expansion is the Taylor series for f at x=a . The expansionisonly valid if it is

convergent .
If a = 0, then the above expansion becomes

f(x):f(0)+f’(0)x+fl_§0)x2+flé(o)x3+...+ 5
which is the Maclaurin series for fat x=a .
Replacing x by x+4 and a by x, the expansion in (A) can be written as

S S s, )
2 h™ + B h+..+ I h'+... (B)

The expansions in (B) is termed as Taylor’'s Theorem and can be stated as: If x and 4

f(x+h)=f(x)+f’(x)h+

are two independent quantities and f(x+#) can be expanded in ascending power of % as

an infinite series, then

version: 1.1
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f(x+h):f(x)+f'(x)h+

Example 1: Find the Taylor series expansion of In (1 + x) at x = 2.

Solution: Let f(x) =In(1+x),then f(2)=In (1+2)=In3
Finding he successive derivatives of In(1+x) and evaluating them at x = 2

f'(x):1+x and f(2) :ﬁ :é
(= B x) and f7(2) =—(1+2)‘2=_é

and f"(2) =2 . (1+2) =2—|27

7O = (D234 (1) B and 0(2) £

f(x)=f(a)+f'(a).(x—a)+M(x—a)2+fm(a) (x—a)3+ ......

2 3
Now substituting the relative values, we have
1 2 3
In (1+x)=ln3+%(x—2)+_Eg(x—2)2+ZE7(x—2)3 +%(x—2)4+....
SN LSS Y E W CE
1.3 2.3 3.3 4.3
Example 2: Use the Taylor series expansion to find the value of sin 31°.

Solution: We takeg=30°=7%~

6
Let f(x) =sin x, then ﬁ(%) sin%

version: 1.1
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Now taking the successive derivative of sin x and evaluating them at % , we have

, (r 7 3
X) =cos x and L lzcos= ="
/(%) f (6) cos6 5
: A 7T V4 -1
"(x) =—sin x and — |= sin— —
2r (- mz 3
o 7 PN
X)=-—cos x and — |= - —
s ( ) / (6) QOS6 2
SO (x)=—(=sin x)=sin x and (zj _sin -1
6 6 2
Thus the Taylor series expansion at == is
1 S CI
. 1 3 T 2 T 2 T
sinx=—+—|x—— |[+—=|x—=| +—%=|x—=—| +
2 2 6) |2 6 13 6
1 3 7 1 7[)2 \/5( Y
=—+t—|X——|-——|Xx——| ——|x——| +
2 2 6 22 6 2|3 6
For x =31-x %z(}l" 30°) =4’ 017455
sin 31° zl+£(.017455)—l(.017455)2 —ﬁ(.017455)3
2 2 4 12

~.5+.015116 -0.000076 =.5150

2 3
Example 3: Prove that " = ex{1+ pole }

2 3
Solution: Let f(x+4) =e"'sthen f(x) e ..(i)

By successive derivatives of (i) w.r.t ‘x’ we have
S '(x):e",f ’ (x)=e", f m(x)=e" etc.

By Taylor's Theorem we have

version: 1.1
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2

P h) = () h 17 (0) 2 () e ()

12 3

Putting the relative values, we get

2 3
= +h e +—e +—e +...

2 B
. hn
=e [1+h+E+E+“}

Apply the Maclaurin series expansion to prove that:

. x2 .X3 .X4
| In(I+x)=x——+——-——F+......
) (I4x) = x="rt o=
() 1 X2 X4 X6
i COS X =l ...
2 [4 |6
2 3
(i) VI+x =1+2- 42 4 .
2 8 16
x2 3
(iv) & =l4+x+—+—+......
2 3
2 3
(v) &+ IS L.
2 3
2. Show that:
2 h3
cos(x+h)=cosx—hsinx——cosx+-—sinx+......
(x+h) 2R

and evaluate cos 61°.

(n2)'#* (In2)'K°

3. Showthat 2*" =2"{1+(In2)h+ 2 +

3

218 GEOMETRICAL INTERPRETATION

OF A DERIVATIVE

Let AB be the arc of the graph of f defined by the equation y = f(x).

LetP(x,f(x)) and Q(x+5x.f(x+5x)) be two
neighbouring points on the arc AB where x,
x+oxeD,.

The line PQ is secant of the curve and it makes
/XSO with the positive direction of the x-axis. (See
the figure 2.21.1)

Drawing the ordinates PM,QON and

n-l!

» X

perpendicular PR to NQ, we have

RQ = NO-NR = NQ-MP = f(x+6x)— f(x)
and PR = MN = ON-OM = x+dx—x = Ox
Thus tan m ZXSQ = tan m ZRPQ

_RO _ f(x+5x)—f(x)
PR ox

A
B
Oix+dx, f{x+8x))
A e
Peeron R
ol /S M N
FIGURE 2.21.1

Revolving the secant line PQ about P towards P, some of its successive positions

PQ,,PQ,,PQ,,... are shown in the figure 2.21.2. Points Qi(i:1,2,3,...) are getting closer and
closer to the point Pand PR, i.e; ox, (i=1, 2, 3, ...) are approaching to zero.

In other words we can say that the
revolving secant line approaches the tangent
line PT as its limiting position at P while 6x
approaches zero, that is,

tan m £ XSQ —tanm LXTP whenox — 0

_ [
or f(x+55x) f(x) —tanm/ZXTP as 6x—>(0 —=+— T -
X
so lim f(x+5x)—f(x): tanmz XTP = FIGURE 2.21.2
ox—0 5x

version: 1.1
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or f’(x) =tanm LXTP

Thus the slope of the tangent line to the graph of fat (x, /(x)) is f'(x).

Example 1:

Solution: Let  f(x) = |x]
£(0)=10]=0 and,
£(0+6x)=0+65x|=| 5x|,
SO f(0+6x)-f(0) = |6x[-0
and f(0+5x)—f(0) _ |Ox|
ox ox
x|

Thus f’(O) = [lim

Sx—0 5)(;

Because |5x| =0x when 6x>0

and |6x| =—6x when 6x <0

so we consider one-sided limits

|5x| ox
Lim = Lim =1
Sx—0" X 5x—0" X
. ) —Ox
and Lim | | =Li — 1
Sx—0" X S5x—0 ox

Discuss the tangent line to the graph of the function | x| at x=0.

FIGURE 2.21.3

The right hand and left hand limits are not equal, therefore, the Lim |5+ does not

exist.

5x—0  Sx

This means that f’(0),the derivative of f at x=0 does not exist and there is no tangent

line to the graph of 7 and x =0
(see the figure 2.21.3).

version: 1.1
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Example 2:
whose abscissa is 4.

Solution. Giventhat x*-y*-6y=0 (i)

Find the equations of the tangents to the curve x* - y> -6y =0 at the point

We first find the y-coordinates of the points at which the equations of the tangents are to

be found. Putting x=4 is (i) gives

_—6+36+64 6100 —6£10
2

16—y> -6y =0

or y > 3 ,that is ,
—6+10 4 —6-10 -16
= :—:2 = = = -_
> > or y 5 2 8
Thus the points are (4, 2) and (4, - 8).
Differentiating (i) w.r.t. ‘x" we have
22, Y W _ :>2d—y(y+3) =2x b __=
dx  dx dx dx y+3
The slope of the tangent to (i) at (4, 2) = =2i3=§ .
+

Therefore, the equation of the tangent to (i) at (4, 2) is

y=2 = %(x—4)

or Sy=4x-6

=5y—-10=4x-16

The slope of the tangent to (i) at (4, - 8) = 4 4

—-8+3 5
Therefore the equation of the tangent to (i) at (4, - 8) is

4

y=(-8)=1x-4)

Sy+40=—-4x+16 =4x+5y+24=0

=y’ +6y—16 =0

version: 1.1
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219 INCREASING AND DECREASING
FUNCTIONS

Let f be defined on an interval (a, b) and let x,,x, €(a,b). Then
(i)  fisincreasing on the interval (a, b) if f(ix,) > f(x,) whenever x, > x,
(i)  fis decreasing on the interval (a, b) if f(x,) < fix,) whenever x, > x,

ST ™9
& Qe
\Qc' I : : @!‘bg

/

|
a X X b a x x b

fe)>f (x,) if ;> x, S GR)<f(a) if x> x,
We see that a differentiable function fis increasing on (a,b) if tangent lines to its graph
at all points (x, f(x)) where x €(a, b) have positive slopes, that is,
f’(x)>0forall xsuchthata<x<b

and f is decreasing on (a, b) if tangent lines to its graph at all points (x,f(x)) where

e(a,b), have negative slopes, thatis, f'(x)<0 for all x such that a<x<b
Now we state the above observation in the following theorem.

Theorem:
Let f be a differentiable function on the open interval (a,b). Then

(i) fisincreasingon(a,b)if f/'(x)>0 for each xe(a,b)
(ii) fis decreasingon (a,b)if f'(x)<0 for each xe(a,b)
Let f(x) =x*, then

F(0)-f(x)=x"—x"=(x,—x)(x, +x,)

version: 1.1

If x,,x, €(-,0)and x, > x, ,, then
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f(x)=f(x)<0
= f(x)<f(x)

= f is decreasing on the interval (—o0,0)

(- x,—x >0and x, +x, <0)

If x,,x,€(0,00) and x, >x, , then
f(x)-f(x)>0
=1 (x,)>f(x)

= fis increasing on the interval (0, «)

(- x,—x, >0and x, +x, >0)

Here f'(x)=2x and f () -®forall x ( ,0), therefore,
fis decreasing on the interval (—,0)
Also  f'(x)>0 for all xe(0,x), so f is increasing on the interval
(0, ).
From the above theorem we can conclude that
1. f'(x)<0 = f isdecreasing at x,
2. f'(x)=0 = f is neither increasing nor decreasing at x,

3.  f(x)>0 = fisincreasing at x,

Now we illustrate the ideas discussed so far considering the function f defined as

f(x):4x—x2 0]
To draw the graph of f, we form a table of some ordered pairs which belongs to f
x —1 0 1 2 3 4 5
y=f(x)| -5 0 3 4 3 0 -5

version: 1.1
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The graph of fis shown in the figure 2.22.1.

+Y
(2,4)
AN
L — i TS T T 1 >
-3-2A 12 34 ﬁ X
(59'5}
('l!'S)
FIGURE 2.22.1

From the graph of f, it is obvious that y rises from 0 to 4 asx increases from 0 to 2 and
y falls from 4 to 0 as x increases from 2 to 4.

In other words, we can say that the function f defined as in (I) is increasing in the
interval 0<x<2 and is decreasing in the interval 2 < x < 4.

The slope of the tangent to the graph of f at any point in the interval 0<x <2, in which
the function f is increasing is positive because it makes an acute angle with the positive
direction of x-axis. (See the tangent line to the graph of fat (1, 3)).

But the slope of the tangent line to the graph of f at any pointin the interval
2<x<4 inwhich the function fis decreasing is negative as it makes an obtuse angle with the
positive direction of x-axis. (See the tangent line to the graph of f at (3, 3)).

As we know that the slope of the tangent line to the graph of f at (x,f(x)) is f'(x), so
the derivative of the function fi.e., f’(x), is positive in the interval in which fis increasing and
f'(x), is negative in the interval in which f is decreasing.

The function f under consideration is actually increasing at each x for which f"(x)>0.

version: 1.1
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l.e. 4-2x >0 = 2x>-4 =>x<2

Thus it is increasing in the interval (—x, 2). Similarly we can show that it is decreasing,
in the interval (2, ).

Now we give an analytical approach to the above discussion.

Let f be an increasing function in some interval in which it is differentiable. Let x and
x+0x be two, points in that interval such that x+6x > x.
As the function fis increasing in the interval, it conveys the fact that f(x + 6x) > f(x).

Consequently we have, f(x+d6x)—f(x)>0and (x+Jx)—x>0, thatis,
fix+dx)—fix)>0and x>0

f(x+5x)—f(x)
ox
The above difference quotient becomes one-sided limit

lim f(x+5x)—f(x)
5x—0* ox

As fis differentiable, so f’(x) exists and one sided limit must equal to f’(x).
Thus f(x)>0

or >0

Example 1: Determine the values of x for which f defined as f(x)=x*+2x-3 is
(i) increasing (ii) decreasing.
(iii) find the point where the function is neither increasing nor decreasing.

Solution: The table of some ordered pairs satisfying f(x)=x"+2x-3 is given below:
X -4 -3 -2 -1 0 1 2
y=fx) 5 0 -3 —4 -3 0 5
version: 1.1
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The graph of fis shown in the figure2.22.2.

f'(x)=2x+2 2 Y
(i)  The condition /' (x)>0 =2x+2 >0 -
(-4,5) 97 (2,5)
=2x > -2 4
which gives x>-1, so the function f defined as 5
f(x)=x*+2x-3 isincreasing in the interval ( —1,:). 9
1 .
(i)  And the condition f'(x)<0 =2x+2 < 0 T2 3 =X
=2x<-2
which gives x <-1, so the function f under
consideration in the example I is decreasing in the

interval (—oo,—l). FIGURE 2.22.2

(iii) The function is neither increasing nor decreasing where f'(x)=0, thatis,
2x+2=0 =>x=-1.

If x=—1thenf(~1)=(~1)" +2(~1)-3=-4. Thus f is neither increasing nor deceasing at
the point (-1, -4).
(\[e] =K Any point where f is neither increasing nor decreasing is called a stationary

point, provided that f* (x) = 0 at that point.

Example 2: Determine the intervals in which fis increasing or it is decreasing if

f(x)=x3—6x2 +9x _J_Y

Solution. f'(x)=3x>-12x+9 T

=3(x* - 4x+3) 1
:3(x—1)(x—3) ‘;{,' 1 'fﬂr B0) ;{'
f’(x) >0

= x’—4x+3>0

= (x—l)(x—3)>0 4

version: 1.1
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(x—1) (x=3)>0"in the intervals (-« ,1) and (3,)
f'(x) <0 = (x-1)(x-3)<0
(x—l)(x—3)<0 if x >1 andx<3thatisl <x<3

2.20 RELATIVE EXTREMA

Let (c—5x,c+§x)ng o
ox is small positive number.

If f(c)=f(x) forall xe(c—3dx,c+6x) thenthefunction
fis said to have a relative maxima at x=c. \
Similarly if f(c)Sf(x) for all xe(c—5x,c+5x) , then
the function f has relative minima at x=c.
Both relative maximum and relative minimum are
called in general relative extrema.
The graph of a function is shown in the adjoining figure.
It has relative maxima at x=b and x=d. But at x=a and

x=c , it has relative minima.
Note that the relative maxima at x=d is not the highest point of the graph.

(domain of a function f), where

I O N O Y Y I

P

igl
X a b

2.21 CRITICAL VALUES AND
CRITICAL POINTS

If ¢ € Dffand f'(c)=00r f'(c) does notexist, then the number cis called a critical value
for f while the point (c. f(c)) on the graph of fis named as a critical point.

Note: There are functions which have extrema (maxima or minima) at the points
where their derivatives do not exist. For example, the derivatives of the function f and ¢
defined as.

version: 1.1
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S (x) =]
2-x x>0 e
and ¢(x) B 24+x x<0
do not exist at (0, 0) and (0, 2) respectively. :Jé" S ofesy ']:{:

But f has minima at (0, 0) and ¢ has maxima at
(0, 2). See the adjoining figures.
Those critical points on the graph of f at which

Yoty

f'(x)=0 are called stationary points of f.
Now we discuss relative maxima and relative
minima of the differentiable function f defined as:

y =f(x) =x -3x" +4 (1)

Graph of f is drawn with the help of some ordered pairs tabulated as below:
X | =32 -1 [=1/2] 0 | 1/2] 1 3/2 | 2 | 5/2] 3
Yy |[-49/8( 0 |[25/8| 4 |27/8| 2 |58 | 0 |7/8]| 4

Now differentiating (i) w.r.t. 'x’ we get
f’(x) =3x> —6x =3x (x—2)

f’(x)zO :>3x(x—2)=0

Now we consider an interval (-6x,6x) in the neighbourhood of x=0. Let 0-¢ is a

=x=0o0or x=2

point in the interval (—6x,0) We see that

S'(0-8)=3(-¢)(-s-2) (~f7(x) =3x(x-2)) R
=3¢(e+2)>0 (e>0,6+2>0) 7Y
(0.4)
Thatis f'(x) is positive for all xe(-6x,0).
Let 0+¢, is a point in the interval (0,5x), then we have 1.0 ]
-—— - —
£1(0+5)=3(¢) (£ -2) R I [ eo X
= 3642 &) 0(2-¢>0,6>0),thatis, [
f'(x) is negative for all xe(0,5x) 1.

version: 1.1
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We note that /'(x)>0 before x=0, /'(x) =0at x=<0and f (x) 0 after x=0.
The graph of f shows that it has relative maxima at x = 0.

Thus we conclude that a function has relative maxima at x=c if f'(x)>0, before
x=c f'(¢)=0 and f’(x)<0 after x=c.

Considering an interval (2 — 8x, 2 + 8x) in the neighbourhood of x = 2we find the values
of f'(2-€)and f'(2+¢e)when2-¢g€(2-6x,2)and 2 + g€ (2, 2 + dx)

f'(2-¢6)=3(2-¢)(2-¢-2) [ f'(x)=3x(x-2)]

-3(2-2)(-)

=-3¢(2-¢)<0 (e>0,2-£>0)
and f'(2+g)=3(2+g)(2+g—2)
=3¢(2+¢)>0 (" e>0,24+¢£>0)

We see that f'(x)<0 beforex=2, f'(x)=0 at x=2 and f'(x)>0afterx=2.

It is obvious from the graph that it has relative minima at x =2.

Thus we conclude that a function has relative minima at x=cif f'(x)<0 before
x=c,f'(x)=0atx;cand>f'(x)>0 after x=c.
First Derivative Rule:

Let f be differentiable in neighbourhood of c where f'(c)=0.

1. If f'(x) changes sign from positive to negative as x increases through ¢, then
f(c) the relative maxima of f.

2. If f'(x) changes sign from negative to positive as x increases through ¢, then

f(c) is the relative minima of f.

version: 1.1
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A stationary point is called a turning point if it is either a maximum point or Example 1: Examine the function defined as

a minimum point.

If f*(x) >0 before the pointx=a,f'(x)=0atx=0andf’(x)> 0 after x =0,

then f does not has a relative maxima. ,
See the graph of f (x) = x. In this case, we have =3(x —4r+3)=3(x-1)(x-3)

f'(x) =3x?, thatis,

f(x)=x’-6x*+9x for extreme values.
Solution: f'(x)=3x"—-12x+9

First Method
If x=1-& where ¢ is very very small positive number, then

f(0-£)=3(=¢) =3 >0

and f'(0+g): 3(5)2: 32 >0 et ; : e (x—l)(x—3)=(1—8—1)(1—8—3)=(—8)(—8—2)=8(2+8)>O that is,
The function fis increasing before x = 0 and also
it is increasing after x = 0.

Such a point of the function is called the

point of inflexion.

f'(x)>0before x=1. For x=1 ¢, we have
(x=1)(x=3)=(1+e-1)(1+e-3)=(&)(2+&)=—¢€(2-¢)<0
That iS,f’(x)<O after x=1
As f'(x)>0beforex=1, f'(x)=0=at x landf’'(x)<0afer x 1
Thus f has relative maxima at x=1and f(1)=-1-6+9=4.
e Let x=3-¢, then
Second Derivative Test: | ) (3 (3 (2 ) 0
We have noticed that the first derivative f'(x) of a function changes its sign from (x_ J(x=3)=(3-c-1)3-6-3)=(2-¢)(-¢) ==2(2-¢)<
» . . , , _ , _ That is f'(x) < 0 before x = 3.
positive to negative at the point where f has relative maxima, that is, f ' is a decreasing

function in the neighbouring interval containing the point where f has relative maxima Forx=3+e
5 5 sthep ' (x-1)(x=3)=3+&-1)B+e-3)=(2+¢&)€)>0

That is, f’(x) >0 after x =3.

Thus f"(x) is negative at the point where f has a relative maxima.

As f'(x)<Obefore x=3, f'(x)atx=3and f'(x)> 0 after x=3,
But f'(x) of a function f changes its sign from negative to positive at the point where f /(%) g f'(x)at /() . g
has relative minima, thatis, f'is an increasing function in the neighbouring interval containing Thus f has relative minima at x=3.and f(3)=3(3)" -12(3)+9=0
the point where f has relative minima. Second Method: f"'(x)=3(2x-4)=6(x-2)
: " : : - "(1)=6(1-2)=-6<0, therefore,
Thus f"(x) is positive at the point where f has relative minima. sr1)=6(1-2) <

Second Derivative Rule , _ ; 5
fhas relative maxima at x=1and f(1)=(1) -6(1)" +9(1)
=1-6+9=4

f"(3)=6(3-2) =6 > 0,therefore f has relative minima at x=3 and f(3)=27-54+27=0

Let f be differential function in a neighbourhood of c where f'(¢)=0.Then
1. fhas relative maxima at cif /"(¢)<0.
2. fhasrelative minima at cif f"(c)>0.

version: 1.1 version: 1.1
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Example 2: Examine the function defined as f(x)=1+x’ for extreme values

Solution: Giventhat f(x)=1+x’
Differentiating w.r.t. 'x’ we get f’(x)=3x
f(x)=0 =3x" =0 =x=0
f(x)=6x and /" (0)=6(0)=0
The second derivative does not help in determining the extreme values.
f1(0-¢)=3(0-¢) =3 >0
£'(0+£)=3(0+¢) =3 >0
As the first derivative does not change sign at x=0, therefore (0, 0) is a point
of inflexion.

2

Example 3: Discuss the function defined as f(x)=sinx+ 2\1/5 cos 2x for extreme values in
the interval (0, 27).

Solution: Given that f(x)=sinx+

! cos 2x
2\2

f’(x) =CoS X +ﬁ(—2sin 2x) =CoS X —%Sin 2x

1
=cosx ——(2sin x-€os x) cosx \/Esmxcosx
7 )

= cos x(l—x/zsinx)

Now f’(x) 0 :>cosx(1—\/§sinx)20

=cosx=0 = x=

-l;‘|>) w‘m
-l;|f\:,’ M|§,’

or l—ﬁsinx=0 :>Sinx:L = x=
V2

Differentiating (i) w.r.t. ‘x’, we have

version: 1.1
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f”(%)z sinx %(coséxéc 2 sinx 2cos2x
As f”(%):—sin%—ﬁcosn:—l—ﬁx(—l):\/5—1>0
and f”(%jz—sin%{—ﬁcos 37z=—(—1)—\/5(—1):1+\/§>0

Thus f(x) has minimum values for ngand x:%Z

As f”(%}: sin% \/Eeesg— \%—2\/5<0 % 0

and f”(%}: sin%Z \/Ecos%— \/LE—Z\/E<O % 0

Thus f(x) has minimum values for x:% and x:T”

1. Determine the intervals in which f is increasing or decreasing for the domain
mentioned in each case.

(i) f(x) = sin x ; xe(—ﬂ,ﬂ)
(i) f(x) = cos x ; xe %%}
(iii) f(x) =4—x’ ; xe —2,2)
(iv)  f(x)=x"+3x+2 ; xe(—4.1)

2.  Find the extreme values for the following functions defined as:

(i) f(x):l—x3 (i) f(x)zxz—x—Z
(iii) f(x) = 5x*—6x+2 (iv) f(x) = 3x*
(V) f(x) = 3x"—4x+5 (vi) f(x) =2x —2x*-36x+3

version: 1.1
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(vii) f(x) = x'—4x’ (viii) f(x) = (x—2)2(x—1)
(ix) f(x) = 5+43x—x

3. Find the maximum and minimum values of the function defined by the following
equation occurring in the interval [0,27]
f(x) = Sin X+ cos X.

4. Showthat y = Inx has maximum value at x=e.
X

5. Showthat y = x* has a minimum value at le.
e

Application of Maxima and Minima

Now we apply the concept of maxima and minima to the practical problems. We first
form the functional relation of the form y = f(x) from the given information and find the
maximum or minimum value of f as required. Here we solve some examples
relating to maxima and minima problems.

Example 1: Find two positive integers whose sum is 9 and the product of one with
the square of the other will be maximum.

Solution: Let x and 9-x be the two required positive integers such that
x(9-x)" will be maximum.,
Let  f(x) = x(9—x)2. Then
F1(x) =1.(9-x) +x.2(9-x)x(-1)
=(9-x)[9-x-2x]=(9—-x)(9-3x)=3(9-x)(3—x)
f'(x)=0=3(9-x)(3-x)=0 =x=9 or x=3
In this case x=9 is not possible because

9—x=9-9=0 which is not positive integer.

17(3)=3(1)(3=3) (9= 2)<(-)]=3[-3+ x-9-x

2. Differentiation elLearn.Punjab
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=3[2x-12]=6(x—6)

As  f"(3)=6(3-6)=6(-3)=-18 which is negative.

Thus f(x) gives the maximum value if x=3, so the other positive integer is 6 because
9-3=6.

Example 2: What are the dimensions of a box of a square base having largest
volume if the sum of one side of the base and its height is 12 cm.

Solution: Let the length of one side of the base (in cm) be x and the height of the box (in
cm) be h, then V=x’#
It is given that x+ A =12 =>h=12-x

Thus V=x*(12-x) and

cjl—V =2x(12-x)+x*(-1)=24x-3x> =3x(8 — x)
x

P _y = 3x(8-x)=0. In this case x cannot be zero,

dx
SO 8—x=0 = x=8&.

d’v

2

. =24 —6x which is negative for x=8
X

Thus Vis maximum if x =8(cm) and h=12 - 8 = 4(cm)

Example 3: The perimeter of a triangle is 20 centimetres. If one side is of length 8
centimetres, what are lengths of the other two sides for maximum area of the triangle?

Solution: Let the length of one unknown side (in cm) be x , then the length of the other
unknown side (in cm) will be 20-x-8=12-x .
Let y denote the square of the area of the triangle, then we have

20

y=10(10—8)(10—x)(10—12+x) (..-s=7=10 and area of the triangle \/s(s—a)(s—b)(s—c))

=10.2(10 - x)(x - 2) = 20(—x" +12x - 20)
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% =20(—2x+12)=—40(x—06)
D_y
dx

2

As Z’ f is -ve,s0 x = 6 gives the maximum area of the triangle.
X

The length of other unknown side =12-6=6(cm)
Thus the lengths of the other two sides are 6 cm and 6 cm.

=x=6

Example 4: An open box of rectangular base is to be made from 24 cm by 45cm
cardboard by cutting out square sheets of equal size from each corner and bending the
sides. Find the dimensions of corner squares to obtain a box having largest possible
volume.

Solution: Let x (in cm) be the length of a side of each square sheet to be cut off from each
comer of the cardboard. Then the length and breadth of the resulting box (in cm) will be
45-2xand 24 -2x respectively. Obviously the height of the box (in cm) will be x. Thus the
volume V of the box (in cubic cm) will be given by

X

V =x(24-2x)(45-2x)=2x(12-x)(45-2x) x{) . ™Y x
=2x(540 - 69x +2x°) !
|
dv 24 -2x
and E:z[l.(zﬁ —69x+540)+x(4x—69)] i
=2(6x" ~138x +540) g == - A5 DE it i >
X L) *
=12[ x* —23x+90 |=12(x = 5)(x—18) x v

av

— =x=5 or x=18
dx

0 =12(x-5)(x-18)=0
= x=5[vif x=18, then 12-x=12—-18 =—6, that is,
V'is negative which is not possible]

dzy_
dx?

12(2x-23)

version: 1.1
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2

s negative for x=5 because 12(2x5-23)=12(-13)

2
X

Thus V will be maximum if the length of a side of the corner square to be cut off is 5 cm.

Example 5: Find the point on the graph of the curve y = 4 — x2 which is closest to
the point (3, 4).

Solution: Let / be distance between a point (x,y) on the curve y=4-x* and the point (3,

4). Then! = [(x-3)" +(y-4)’

:\/(x—3)2 +(4—x2—4)2

= (x—3)2+x4

( (x,y)is on the curve y =4 — xz)

Now we find x for which [ is minimum.

ﬂ: l1
dx 2.\/(x—3)2 +x*

[(2(x 3) 40)]

= %.2(2)63 +Xx— 3)

version: 1.1
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:%(ZX3 +x—3)

= %(x — 1)(2)(?2 +x— 3)

D _p :ykx—yxzﬁ+2x+3}4)::x—1=0 or 2x’+2x+3=0
dx [

=x=1 (w2x" +2x+3=0)
[ is positive for 1 — & and 1+& where ¢ is very very small positive real number.

2
Also 2x* +2x+3=2 x2+x+l +§=2 x+l +§ is positive,for x =l —
4) 2 2 2
and x=1+¢

The sign of % depends on the factor x-1.
X

x— Tisnegativeforx=1-¢gbecausex—-1=1-¢ —-1=-¢ ... (i)
x— Tis positiveforx=1+ g¢becausex-1=1+¢ -1=¢ ... (ii)

From (i) and (ii), we conclude that % changes sign from —ve to +ve at x = 1.
X

Thus [ has a minimum value at x = 1.
Putting x=1iny=4-x>, we get the y-coordinate of the required point which

is 4—(1)" =3
Hence the required point on the curve is (1, 3).

1.  Find two positive integers whose sum is 30 and their product will be maximum.
Divide 20 into two parts so that the sum of their squares will be minimum.

3. Find two positive integers whose sum is 12 and the product of one with the square
of the other will be maximum.

4. The perimeter of a triangle is 16 centimetres. If one side is of length 6 cm, what are
length of the other sides for maximum area of the triangle?

5. Find the dimensions of a rectangle of largest area having perimeter 120 centimetres.
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2. Differentiation elLearn.Punjab

10.

1.

12.

Find the lengths of the sides of a variable rectangle having area 36cm’ when its
perimeter is minimum.

A box with a square base and open top is to have a volume of 4 cubic dm. Find the
dimensions of the box which will require the least material.

Find the dimensions of a rectangular garden having perimeter 80 metres if its area
is to be maximum.

An open tank of square base of side x and vertical sides is to be constructed to
contain a given quantity of water. Find the depth in terms of x if the expense of lining
the inside of the tank with lead will be least.

Find the dimensions of the rectangle of maximum area which fits inside the
semi-circle of radius 8 cm as shown in the figure.

Find the point on the curve y = x2— 1that is closest to the point (3, -1).

Find the point on the curve y = x>+ 1 that is closest to the point (18, 1).
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