CHAPTER

FACTORIZATION

Animation 5.1: Factorization Source & Credit: eLearn.punjab

Students Learning Outcomes Introduction After studying this unit, the students will be able to: Factorization plays an important role in mathematics as it helps * Recall factorization of expressions of the following types. to reduce the study of a complicated expression to the study of ka + kb + kcsimpler expressions. In this unit, we will deal with different types of . factorization of polynomials. ac + ad + bc + bd $a^2 \pm 2ab + b^2$ $a^2 - b^2$ **5.1 Factorization** $a^2 + 2ab + b^2 - c^2$ If a polynomial p(x) can be expressed as p(x) = g(x)h(x), then * Factorize the expressions of the following types. each of the polynomials g(x) and h(x) is called a factor of p(x). For instance, in the distributive property Type I: $a^4 + a^2b^2 + b^4$ or $a^4 + 4b^4$ ab + ac = a(b + c),Type II: a and (b + c) are factors of (ab + ac). $x^2 + px + q$ When a polynomial has been written as a product consisting Type III: only of prime factors, then it is said to be factored completely. $ax^2 + bx + c$ Type IV: (a) Factorization of the Expression of the type ka + kb + kc $(ax^{2} + bx + c)(ax^{2} + bx + d) + k$ (x + a) (x + b) (x + c) (x + d) + k**Example 1** $(x + a) (x + b) (x + c) (x + d) + kx^{2}$ Factorize 5a - 5b + 5cType V: $a^3 + 3a^2b + 3ab^2 + b^3$ Solution $a^3 - 3a^2b + 3ab^2 - b^3$ 5a - 5b + 5c = 5(a - b + c)Type VI: $a^{3} \pm b^{3}$ Example 2 Factorize 5a - 5b - 15c* State and prove remainder theorem and explain through examples. * Find Remainder (without dividing) when a polynomial is divided by Solution a linear polynomial. 5a - 5b - 15c = 5(a - b - 3c)* Define zeros of a polynomial.

(b) Factorization of the Expression of the type ac + ad + bc + bd

(ac + ad) + (bc + db)

Version: 1.1

* Use Factor theorem to factorize a cubic polynomial.

* State and prove Factor theorem.

We can write ac + ad + bc + bd as

5. Factorization

= a(c+d) + b(c+d)	Example 2
= (a + b)(c + d)	Factorize $12x^2 - 36x$
For explanation consider the following examples.	
	Solution
Example 1	$12x^2 - 36x + 27$
Factorize $3x - 3a + xy - ay$	=
	=
Solution	
Regrouping the terms of given polynomial	(d) Factorization of the
3x + xy - 3a - ay = x(3 + y) - a(3 + y) (monomial factors)	For explanation o
$= (3 + y) (x - a) \qquad (3 + y) \text{ is common factor}$	
	Example 1
Example 2	Factorize (i) 4
Factorize $pqr + qr^2 - pr^2 - r^3$	
	Solution
Solution	(i) $4x^2 - (2y)$
The given expression = $r(pq + qr - pr - r^2)$ (r is monomial common	
factor)	
$= r[(pq + qr) - pr - r^{2}] $ (grouping of terms)	(ii) 6 <i>x</i> ⁴ -
= r[q(p + r) - r(p + r)] (monomial factors)	
= r(p + r) (q - r) (p + r) is common factor	
(c) Factorization of the Expression of the type a ² ± 2ab + b ²	
We know that	
(i) $a^2 + 2ab + b^2 = (a + b)^2 = (a + b)(a + b)$	(e) Factorization of the
(ii) $a^2 - 2 ab + b^2 = (a - b)^2 = (a - b)(a - b)$	We know that
Now consider the following examples.	$a^2 \pm 2ab$
Example 1	Example 1
Factorize $25x^2 + 16 + 40x$.	Factorize (i) :
Solution	Solution
$25x^2 + 40x + 16 = (5x)^2 + 2(5x)(4) + (4)^2$	(i) $x^2 + 6x + 9 - 4y$
$=(5x+4)^{2}$	
=(5x+4)(5x+4)	

4

6*x* + 27

 $7 = 3(4x^{2} - 12x + 9)$ = 3(2x - 3)² = 3(2x - 3) (2x - 3)

The Expression of the type $a^2 - b^2$

o consider the following examples.

$$4x^2 - (2y - z)^2$$
 (ii) $6x^4 - 96$

$$\begin{aligned} (y-z)^2 &= (2x)^2 - (2y-z)^2 \\ &= [2x - (2y - z)] [2x + (2y - z)] \\ &= (2x - 2y + z) (2x + 2y - z) \\ (4-96) &= 6(x^4 - 16) \\ &= 6[(x^2)^2 - (4)^2] \\ &= 6[(x^2 - 4) (x^2 + 4) \\ &= 6[(x)^2 - (2)^2] (x^2 + 4) \\ &= 6[(x - 2) (x + 2) (x^2 + 4) \end{aligned}$$

The Expression of the type $a^2 \pm 2ab + b^2 - c^2$

$$(b + b^2 - c^2 = (a \pm b)^2 - (c)^2 = (a \pm b - c)(a \pm b + c)$$

) $x^2 + 6x + 9 - 4y^2$ (ii) $1 + 2ab - a^2 - b^2$

$$4y^{2} = (x + 3)^{2} - (2y)^{2}$$

= (x + 3 + 2y)(x + 3 - 2y)

5

eLearn.Punjab

5. Factorization

 $= (9x^2 +$

Example 2

Factorize $9x^4 + 36y^4$

Solution

(b) Factorization of the Expression of the type $x^2 + px + q$

For explanation consider the following examples.

Example 1

Factorize (i) $x^2 - 7x + 12$ (ii) $x^2 + 5x - 36$

Solution

(i)	$x^2 - 7x + 12$
	From the factors of
sinc	e
	(-3) + (- 4)

Hence $x^2 - 7x + 12 = x^2 - 3x - 4x + 12$

```
(ii) x^2 + 5x - 36
because
           9 + (-4) = 5
```

```
Hence x^2 + 5x - 3
```

(ii) $1 + 2ab - a^2 - b^2 = 1 - (a^2 - 2ab + b^2)$
$= (1)^2 - (a - b)^2$
= [1 - (a - b)] [1 + (a - b)]
= (1 - a + b)(1 + a - b)

EXERCISE 5.1

Factorize

1.	(i) 2	2abc – 4abx + 2abd	(ii)	$9xy - 12x^2y + 18y^2$
	(iii) –	$-3x^2y - 3x + 9xy^2$	(iv)	$5ab^2c^3 - 10a^2b^3c - 20a^3bc^2$
	(v) 3	$3x^{3}y(x-3y) - 7x^{2}y^{2}(x-3y)$	(vi)	$2xy^{3}(x^{2}+5) + 8xy^{2}(x^{2}+5)$
2.	(i) 5	ax – 3ay – 5bx + 3by	(ii)	3xy + 2y - 12x - 8
	(iii) <i>x</i>	$x^3 + 3xy^2 - 2x^2y - 6y^3$	(iv)	$(x^2 - y^2)Z + (y^2 - Z^2)X$
3.	(i)	144 <i>a</i> ² + 24 <i>a</i> + 1	(ii)	$\frac{a^2}{b^2} - 2 + \frac{b^2}{a^2}$
	(iii)	$(x + y)^2 - 14z(x + y) + 49z$	² (iv)	$12x^2 - 36x + 27$
4.	(i)	$3x^2 - 75y^2$	(ii)	x(x-1) - y(y-1)
	(iii)	$128am^2 - 242an^2$	(iv)	$3x - 243x^3$
5	(i)	$v^2 - v^2 - 6v - 9$	(ii)	$r^{2} - a^{2} + 2a - 1$
5.	(1)	x - y = 0y = 9	(11)	x = u + 2u = 1
	(111)	$4x^{2} - y^{2} - 2y - 1$	(IV)	$x^2 - y^2 - 4x - 2y + 3$
	(v)	$25x^2 - 10x + 1 - 36z^2$	(vi)	$x^2 - y^2 - 4xz + 4z^2$

(a) Factorization of the Expression of types $a^4 + a^2b^2 + b^4$ or $a^4 + 4b^4$

Factorization of such types of expression is explained in the following examples.

Example 1

Factorize $81x^4 + 36x^2y^2 + 16y^4$

Solution

$$81x^{4} + 36x^{2}y^{2} + 16y^{4}$$

= $(9x^{2})^{2} + 72x^{2}y^{2} + (4y^{2})^{2} - 36x^{2}y^{2}$
= $(9x^{2} + 4y^{2})^{2} - (6xy)^{2}$
= $(9x^{2} + 4y^{2} + 6xy)(9x^{2} + 4y^{2} - 6xy)$
6

Version: 1.1

$$6xy + 4y^2$$
) $(9x^2 - 6xy + 4y^2)$

 $9x^4 + 36y^4 = 9x^4 + 36y^4 + 36x^2y^2 - 36x^2y^2$ $= (3x^2)^2 + 2(3x^2)(6y^2) + (6y^2)^2 - (6xy)^2$ $=(3x^2+6y^2)^2-(6xy)^2$ $= (3x^2 + 6y^2 + 6xy)(3x^2 + 6y^2 - 6xy)$ $= (3x^2 + 6xy + 6y^2) (3x^2 - 6xy + 6y^2)$

of 12 the suitable pair of numbers is –3 and –4

= -7 and (-3)(-4) = 12= x(x - 3) - 4(x - 3)= (x - 3) (x - 4)

From the possible factors of 36, the suitable pair is 9 and -4

and
$$9 \times (-4) = -36$$

 $36 = x^2 + 9x - 4x - 36$
 $= x(x + 9) - 4(x + 9)$
 $= (x + 9) (x - 4)$

5. Factorization

(c) Factorization of the Expression of the type $ax^2 + bx + c$, $a \neq 0$

Let us explain the procedure of factorization by the following examples.

Example 1

Factorize (i) $9x^2 + 21x - 8$ (ii) $2x^2 - 8x - 42$ (iii) $10x^2 - 41xy + 21y^2$

Solution

(i)	$9x^2 + 21x - 8$
	In this case, on comparing with $ax^2 + bx + c$, $ac = (9)(-8) = -72$
	From the possible factors of 72, the suitable pair of numbers
	(with proper sign) is 24 and –3 whose
	sum = 24 + (– <i>3</i>) = 21, (the coefficient of <i>x</i>)
	and their product = (24) (–3) = $-72 = ac$
	Hence $9x^2 + 21x - 8$
	$=9x^{2}+24x-3x-8$
	= 3x(3x + 8) - (3x + 8)
	=(3x+8)(3x-1)

(ii) $2x^2 - 8x - 42 = 2(x^2 - 4x - 21)$ Comparing $x^2 - 4x - 21$ with $ax^2 + bx + c$ we have ac = (+1)(-21) = -21From the possible factors of 21, the suitable pair of numbers is –7 and +3 whose sum = -7 + 3 = -4 and product = (-7) (3) = -21Hence $x^2 - 4x - 21$ $= x^{2} + 3x - 7x - 21$ = x(x + 3) - 7(x + 3)= (x + 3)(x - 7)Hence $2x^2 - 8x - 42 = 2(x^2 - 4x - 21) = 2(x + 3)(x - 7)$

(iii) $10x^2 - 41xy + 21y^2$ This type of question on factorization can also be done by the above procedures of splitting the middle term. Here *ac* = (10) (21) = 210 Two suitable factors of 210 are –35 and –6

Their sum = -35 - 6 = -41and product = (-35) (-6) = 210 Hence $10x^2 - 41xy + 21y^2$ $= 10x^2 - 35xy - 6xy + 21y^2$ = 5x(2x - 7y) - 3y(2x - 7y)= (2x - 7y)(5x - 3y)

(d) Factorization of the following types of Expressions

 $(ax^{2} + bx + c) (ax^{2} + bx + d) + k$ (x + a)(x + b)(x + c)(x + d) + k $(x + a) (x + b) (x + c) (x + d) + kx^{2}$ We shall explain the method of factorizing these types of expressions with the help of following examples.

Example 1

Factorize $(x^2 - 4x - 5)(x^2 - 4x - 12) - 144$

Solution

 $(x^2 - 4x - 5)(x^2 - 4x)(x^2 - 4x)$ Let $y = x^2 - 4x$. The (y-5)(y-12)-144

Example 2

Solution

We observe that 1 + 4 = 2 + 3. It suggests that we rewrite the given expression as [(x + 1) (x + 4)] [(x + 2) (x + 3)] - 120

$$4x - 12) - 144$$

nen

$$= y^{2} - 17y - 84$$

$$= y^{2} - 21y + 4y - 84$$

$$= y(y - 21) + 4(y - 21)$$

$$= (y - 21) (y + 4)$$

$$= (x^{2} - 4x - 21) (x^{2} - 4x + 4) \quad (since y = x^{2} - 4x)$$

$$= (x^{2} - 7x + 3x - 21) (x - 2)^{2}$$

$$= [x(x - 7) + 3(x - 7)] (x - 2)^{2}$$

$$= (x - 7)(x + 3)(x - 2) (x - 2)$$

Factorize (x + 1) (x + 2) (x + 3) (x + 4) - 120

 $(x^{2} + 5x + 4) (x^{2} + 5x + 6) - 120$ Let $x^2 + 5x = y$, then we get (y + 4) (y + 6) - 120 $= y^2 + 10y + 24 - 120$ $= y^{2} + 10y - 96$ $= y^2 + 16y - 6y - 96$ = y(y + 16) - 6(y + 16)= (y + 16)(y - 6) $= (x^{2} + 5x + 16) (x^{2} + 5x - 6) \text{ since } y = x^{2} + 5x$ $= (x^{2} + 5x + 16) (x + 6) (x - 1)$

Example 3

Factorize $(x^2 - 5x + 6)(x^2 + 5x + 6) - 2x^2$

Solution

$$(x^{2}-5x+6) (x^{2}+5x+6) - 2x^{2}$$

$$= [x^{2}-3x-2x+6][x^{2}+3x+2x+6] - 2x^{2}$$

$$= [x(x-3) - 2(x-3)][x(x+3) + 2(x+3)] - 2x^{2}$$

$$= [(x-3) (x-2)][(x+3) (x+2)] - 2x^{2}$$

$$= [(x-2) (x+2)][(x-3) (x+3)] - 2x^{2}$$

$$= (x^{2}-4) (x^{2}-9) - 2x^{2}$$

$$= x^{4} - 13x^{2} + 36 - 2x^{2}$$

$$= x^{4} - 15x^{2} + 36$$

$$= x^{4} - 12x^{2} - 3x^{2} + 36$$

$$= x^{2}(x^{2}-12) - 3(x^{2}-12)$$

$$= (x^{2}-12) (x^{2}-3)$$

$$= [(x)^{2} - (2\sqrt{3})^{2}][(x)^{2} - (\sqrt{3})^{2}]$$

$$= (x - 2\sqrt{3})(x + 2\sqrt{3})(x - \sqrt{3})(x + \sqrt{3})$$

(e) Factorization of Expressions of the following Types $a^3 + 3a^2b + 3ab^2 + b^3$

 $a^3 - 3a^2b + 3ab^2 - b^3$

For explanation consider the following examples.

Example 1

Factorize $x^3 - 8y^3 - 6x^2y + 12xy^2$

Solution

 $x^3 - 8y^3 - 6x^2y + 12xy^2$. $= (x - 2y)^3$

(f) Factorization of Expressions of the following types $a^3 \pm b^3$ We recall the formulas, $(a^{2} - ab + b^{2})$

$$a^{3} + b^{3} = (a + b^{3})$$

$$a^{3} - b^{3} = (a - b^{3})^{3}$$

For explanation consider the following examples.

Example 1

Factorize $27x^3 + 64y^3$

Solution

 $27x^3 + 64y^3 = (3x)^3 + (4y)^3$ $= (3x + 4y) [(3x)^2 - (3x) (4y) + (4y)^2]$ $= (3x + 4y) (9x^2 - 12xy + 16y^2)$

Example 2

Factorize $1 - 125x^3$

Solution

 $1 - 125x^3 = (1)^3 - (5x)^3$ $= (1 - 5x) [(1)^{2} + (1) (5x) + (5x)^{2}]$ $= (1 - 5x) (1 + 5x + 25x^2)$

10

 $= (x)^{3} - (2y)^{3} - 3(x)^{2} (2y) + 3(x) (2y)^{2}$ $= (x)^{3} - 3(x)^{2} (2y) + 3(x) (2y)^{2} - (2y)^{3}$

= (x - 2y) (x - 2y) (x - 2y)

 $= (a - b) (a^2 + ab + b^2)$

EXERCISE 5.2

Factorize

1.	(i)	$x^4 + \frac{1}{x^4} - 3$	(ii)	$3x^4 + 12y$	<i>r</i> ⁴ (iii)	$a^4 + 3a^2b^2 + 4b^4$	
	(iv) 4 <i>x</i> ⁴ + 81	(v)	$x^4 + x^2 +$	25 (vi)	$x^4 + 4x^2 + 16$	
2.	(i)	$x^2 + 14x + 48$		(ii)	$x^2 - 21x$	c + 108	
	(iii)	$x^2 - 11x - 42$		(iv)	$x^2 + x -$	132	
3.	(i)	$4x^2 + 12x + 5$		(ii)	$30x^2 + 7$	<i>x</i> – 15	
	(iii)	$24x^2 - 65x + 21$		(i∨)	$5x^2 - 16$	x – 21	
	(v)	$4x^2 - 17xy + 4y$	2	(vi)	$3x^2 - 38$	$3xy - 13y^2$	
	(vii)	5 <i>x</i> ² + 33 <i>xy</i> – 14	ly²	(viii) $\left(5x-\frac{1}{x}\right)$	$\Big)^{2} + 4\Big(5x - \frac{1}{x}\Big) + 4, x =$	≠ 0
4.	(i)	$(x^2 + 5x + 4) (x^2 + 5x + 4)$	+ 5x + 6	5) – 3			
	(ii)	$(x^2-4x)(x^2-4x)$: − 1) − :	20			
	(iii)	(x + 2) (x + 3) (x	+ 4) (x ·	+ 5) –15			
	(iv)	(x + 4) (x - 5) (x	+ 6) (x -	– 7) – 504	1		
	(v)	(x + 1) (x + 2) (x	+ 3) (<i>x</i> -	+ 6) $- 3x^2$	2		
5.	(i)	$x^3 + 48x - 12x^2$	- 64	(ii)	$8x^3 + 60x$	² + 150 <i>x</i> + 125	
	(iii)	$x^3 - 18x^2 + 108x$	- 216	(iv)	$8x^3 - 12$	$5y^3 - 60x^2y + 150x^2$	y ²
6.	(i)	$27 + 8x^3$		(ii)	$125x^3 - 2$	16 <i>y</i> ³	
	(iii)	$64x^3 + 27y^3$		(iv)	$8x^3 + 125$	$\overline{b}y^3$	

5.2 Remainder Theorem and Factor Theorem 5.2.1 Remainder Theorem

If a polynomial p(x) is divided by a linear divisor (x - a), then the remainder is *p*(*a*).

Proof

Let q(x) be the quotient obtained after dividing p(x) by (x - a). But the divisor (x - a) is linear. So the remainder must be of degree zero i.e., a non-zero constant, say R. Consequently, by division Algorithm we may write

particular, it is true for x = a. Therefore,

Note: Similarly, if the divisor is (ax - b), we have p(x) = (ax - b) q(x) + R

Thus if the divisor is linear, the above theorem provides an efficient way of finding the remainder without being involved in the process of long division.

5.2.2 To find Remainder (without dividing) when a polynomial is divided by a Linear Polynomial

Example 1

Find the remainder when $9x^2 - 6x + 2$ is divided by (i) x - 3 (ii) x + 3 (iii) 3x + 1 (iv) x

Solution

- Let $p(x) = 9x^2 6x + 2$
- is

$$R = p(-3) = 9($$

$$R = p\left(-\frac{1}{3}\right) = 9\left(-\frac{1}{3}\right)^2 - 6\left(-\frac{1}{3}\right) + 2 = 5$$

(v) When p(x) is divided by x, the remainder is $R = p(0) = 9(0)^2 - 6(0) + 2 = 2$

p(x) = (x - a) q(x) + RThis is an identity in x and so is true for all real numbers x. In p(a) = (a - a) q(a) + R = 0 + R = Ri.e., p(a)= the remainder. Hence the theorem.

Substituting $x = \frac{a}{b}$ so that ax - b = 0, we obtain

$$p\left(\frac{b}{a}\right) = 0 \cdot q\left(\frac{b}{a}\right) + R = 0 - R = R$$

(i) When p(x) is divided by x - 3, by Remainder Theorem, the remainder

 $R = p(3) = 9(3)^2 - 6(3) + 2 = 65$

(ii) When p(x) is divided by x + 3 = x - (-3), the remainder is $(-3)^2 - 6(-3) + 2 = 101$

(iii) When p(x) is divided by 3x + 1, the remainder is

5. Factorization

Example 2

Find the value of k if the expression $x^3 + kx^2 + 3x - 4$ leaves a remainder of -2 when divided by x + 2.

Solution

Let $p(x) = x^3 + kx^2 + 3x - 4$

By the Remainder Theorem, when p(x) is divided by x + 2 = x - (-2), the remainder is

 $p(-2) = (-2)^3 + k(-2)^2 + 3(-2) - 4.$ = -8 + 4k - 6 - 4= 4k – 18 By the given condition, we have

 $p(-2) = -2 \implies 4k - 18 = -2 \implies k = 4$

5.2.3 Zero of a Polynomial

Definition

If a specific number x = a is substituted for the variable x in a polynomial p(x) so that the value p(a) is zero, then x = a is called a zero of the polynomial p(x).

A very useful consequence of the remainder theorem is what is known as the factor theorem.

5.2.4 Factor Theorem

The polynomial (x - a) is a factor of the polynomial p(x) if and only if p(a) = 0.

Proof

Let q(x) be the quotient and R the remainder when a polynomial p(x) is divided by (x - a). Then by division Algorithm,

p(x) = (x - a) q(x) + RBy the Remainder Theorem, R = p(a). Hence p(x) = (x - a) q(x) + p(a)

- (i) Now if p(a) = 0, then p(x) = (x a) q(x)i.e., (x - a) is a factor of p(x)
- This completes the proof.

Example 1

Solution

For convenience, let $p(x) = x^3 - 4x^2 + 3x + 2$ Then the remainder for (x - 2) is $p(2) = (2)^3 - 4(2)^2 + 3(2) + 2$

Example 2

(i.e., roots).

Solution

Since x = 2, -1, 3 are roots of p(x) = 0So by Factor Theorem (x - 2), (x + 1) and (x - 3) are the factors of p(x). Thus p(x) = a(x-2)(x+1)(x-3)where any non-zero value can be assigned to a. Taking a = 1, we get p(x) = (x-2)(x+1)(x-3)as the required polynomial. $= x^3 - 4x^2 + x + 6$

(ii) Conversely, if (x - a) is a factor of p(x), then the remainder upon dividing p(x) by (x - a) must be zero i.e., p(a) = 0

Note: The Factor Theorem can also be stated as, "(x - a) is a factor of p(x) if and only if x = a is a solution of the equation $p(x) = 0^{"}$.

The Factor Theorem helps us to find factors of polynomials because it determines whether a given linear polynomial (x - a) is a factor of p(x). All we need is to check whether p(a) = 0.

```
Determine if (x - 2) is a factor of x^3 - 4x^2 + 3x + 2.
```

```
= 8 - 16 + 6 + 2 = 0
Hence by Factor Theorem, (x - 2) is a factor of the polynomial p(x).
```

Find a polynomial p(x) of degree 3 that has 2, -1, and 3 as zeros

EXERCISE 5.3

1.	. Use the remainder theorem to find the	e remainder when
	(i) $3x^3 - 10x^2 + 13x - 6$ is	divided by $(x - 2)$
	(ii) $4x^3 - 4x + 3$ is	divided by $(2x - 1)$
	(iii) $6x^4 + 2x^3 - x + 2$ is	divided by $(x + 2)$
	(iv) $(2x-1)^3 + 6(3+4x)^2 - 10$ is	s divided by $(2x + 1)$
	(v) $x^3 - 3x^2 + 4x - 14$ is	divided by $(x + 2)$
2.	(i) If $(x + 2)$ is a factor of $3x^2 - 4kx$	$x - 4k^2$, then find the value(s)
	of <i>k</i> .	
	(ii) If $(x - 1)$ is a factor of $x^3 - kx^2$	+ $11x - 6$, then find the value
	of <i>k</i> .	
3.	. Without actual long division determin	e whether
	(i) (x – 2) and (x – 3) are factors o	$f p(x) = x^3 - 12x^2 + 44x - 48.$
	(ii) (<i>x</i> − 2), (<i>x</i> + 3) and (<i>x</i> − 4) are fa	ctors of $q(x) = x^3 + 2x^2 - 5x - 6$.
4.	. For what value of <i>m</i> is the polynomial	$p(x) = 4x^3 - 7x^2 + 6x - 3m$
	exactly divisible by $x + 2$?	
5.	. Determine the value of k if $p(x) = kx^3 + kx^3$	$4x^2 + 3x - 4$ and
	$q(x) = x^3 - 4x + k$ leaves the same rema	inder when divided by $(x - 3)$.
6.	. The remainder after dividing the polyn	omial $p(x) = x^3 + ax^2 + 7$ by $(x + 1)$
	is 2b. Calculate the value of a and b	b if this expression leaves a
	remainder of (b + 5) on being divided	by (<i>x</i> – 2).
7.	7. The polynomial $x^3 + x^2 + mx + 24$ has a	a factor (x + 4) and it leaves a
	remainder of 36 when divided by (x –	2). Find the values of l and m.
8.	3. The expression $ x^3 + mx^2 - 4 $ leaves rer	nainder of –3 and 12 when
	divided by $(x - 1)$ and $(x + 2)$ respectiv	ely. Calculate the values of 1
	and m.	
9.	b. The expression $ax^3 - 9x^2 + bx + 3a$ is ex	actly divisible by $x^2 - 5x + 6$.
	Find the values of <i>a</i> and <i>b</i> .	
_		5.1
5.	b.3 Factorization of a Cubic I	Polynomial

We can use Factor Theorem to factorize a cubic polynomial

16

as explained below. This is a convenient method particularly for factorization of a cubic polynomial. We state (without proof) a very useful Theorem.

Rational Root Theorem

Let $a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0$, $a_0 \neq 0$ be a polynomial equation of degree *n* with integral coefficients. If p/qis a rational root (expressed in lowest terms) of the equation, then p is a factor of the constant term a_n and q is a factor of the leading coefficient a_{o} .

Example 1

Solution

```
We have P(x) = x^3 - 4x^2 + x + 6.
then (x - a) will be a factor.
   Now P(1) = (1)^3 - 4(1)^2 + 1 + 6
   Hence x = 1 is not a zero of P(x).
   Again P(-1) = (-1)^3 - 4(-1)^2 - 1 + 6
   x - (-1) = (x + 1) is a factor of P(x).
   Now P(2) = (2)^3 - 4(2)^2 + 2 + 6
   Hence (x - 2) is also a factor of P(x).
   Similarly P(3) = (3)^3 - 4(3)^2 + 3 + 6
```

Factorize the polynomial $x^3 - 4x^2 + x + 6$, by using Factor Theorem.

Possible factors of the constant term p = 6 are ± 1 , ± 2 , ± 3 and ± 6 and of leading coefficient q = 1 are ± 1 . Thus the expected zeros (or roots) of P(x) = 0 are $\frac{p}{a} = \pm 1, \pm 2, \pm 3$ and ± 6 . If x = a is a zero of P(x),

We use the hit and trial method to find zeros of P(x). Let us try x = 1.

 $= 1 - 4 + 1 + 6 = 4 \neq 0$

= -1 - 4 - 1 + 6 = 0

Hence x = -1 is a zero of P(x) and therefore,

 $= 8 - 16 + 2 + 6 = 0 \implies x = 2$ is a root.

 $= 27 - 36 + 3 + 6 = 0 \implies x = 3$ is a zero of P(x).

Hence (x - 3) is the third factor of P(x).

 $1 - 12pq + 36p^2q^2$ (ix)

- original polynomial.
- of the following types:
 - ka + kb + kc•

 - $a^{2} \pm 2ab + b^{2}$
 - $a^2 b^2$

 - $a^3 \pm b^3$ •
- remainder is p(a).
- a zero of the polynomial p(x).
- polynomials.

Thus the factorized form of
$P(x) = x^3 - 4x^2 + x + 6$
is $P(x) = (x + 1) (x - 2) (x - 3)$

EXERCISE 5.4

Factorize each of the following cubic polynomials by factor theorem.

1.	$x^3 - 2x^2 - x + 2$	2.	$x^3 - x^2 - 22x + 40$	3.	$x^3 - 6x^2 + 3x + 10$
4.	$x^3 + x^2 - 10x + 8$	5.	$x^3 - 2x^2 - 5x + 6$	6.	$x^3 + 5x^2 - 2x - 24$
7.	$3x^3 - x^2 - 12x + 4$	8.	$2x^3 + x^2 - 2x - 1$		

REVIEW EXERCISE 5

- 1. Multiple Choice Questions. Choose the correct answer.
- 2. Completion Items. Fill in the blanks.
 - $x^2 + 5x + 6 = \dots$ (i)
 - $4q^2 16 = \dots$ (ii)
 - $4a^2 + 4ab + (\dots)$ is a complete square (iii)

(iv)
$$\frac{x^2}{y^2} - 2 + \frac{y^2}{x^2} = \dots$$

- $(x + y)(x^2 xy + y^2) = \dots$ (v)
- Factored form of $x^4 16$ is (vi)
- (vii) If x 2 is factor of $p(x) = x^2 + 2kx + 8$, then $k = \dots$
- 3. Factorize the following.

(i)	x^2 + 8 x + 16 – 4 y^2	(ii)	$4x^2 - 16y^2$
(iii)	$9x^2 + 27x + 8$	(iv)	$1 - 64z^{3}$

(v)
$$8x^3 - \frac{1}{27y^3}$$
 (vi) $2y^2 + 5y - 3$

(vii)
$$x^3 + x^2 - 4x - 4$$
 (viii) $25m^2n^2 + 10mn + 1$

Version: 1.1

SUMMARY

* If a polynomial is expressed as a product of other polynomials, then each polynomial in the product is called a factor of the

* The process of expressing an algebraic expression in terms of its factors is called factorization. We learned to factorize expressions

ac + ad + bc + bd

 $(a^2 \pm 2ab + b^2) - c^2$ $a^4 + a^2b^2 + b^4$ or $a^4 + 4b^4$ $x^2 + px + q \bullet$ $ax^2 + bx + c$ $(ax^{2} + bx + c)(ax^{2} + bx + d) + k$ (x + a) (x + b) (x + c) (x + d) + k $(x + a)(x + b)(x + c)(x + d) + kx^{2}$ $a^3 + 3a^2b + 3ab^2 + b^3$ $a^3 - 3a^2b + 3ab^2 - b^3$

* If a polynomial p(x) is divided by a linear divisor (x - a), then the

 \star If a specific number x = a is substituted for the variable x in a polynomial p(x) so that the value p(a) is zero, then x = a is called

* The polynomial (x - a) is a factors of the polynomial p(x) if and only if p(a) = 0. Factor theorem has been used to factorize cubic

19