version: 1.1

CHAPTER

LINE BISECTORS AND ANGLE BISECTORS

Animation 12.1: Angle- Bisectors Source & Credit: mathsonline

Students Learning Outcomes

After studying this unit, the students will be able to:

- Prove that any point on the right bisector of a line segment is equidistant from its end points.
- Prove that any point equidistant from the end points of a line segment is on the right bisector of it.
- Prove that the right bisectors of the sides of a triangle are concurrent.
- Prove that any point on the bisector of an angle is equidistant from its arms.
- Prove that any point inside an angle, equidistant from its arms, is on the bisector of it.
- Prove that the bisectors of the angles of a triangle are concurrent.

Introduction

In this unit, we will prove theorems and their converses, if any, about right bisector of a line segment and bisector of an angle. But before that it will be useful to recall the following definitions:

Right Bisector of a Line Segment

A line is called a right bisector of a line segment if it is perpendicular to the line segment and passes through its midpoint.

Bisector of an Angle

A ray BP is called the bisector of $\angle ABC$, if P is a point in the interior of the angle and $m \angle ABP = m \angle PBC$.

Theorem 12.1.1

Any point on the right bisector of a line segment is equidistant from its end points.

Given

The point P is on the right bisector of AB.

Construction

Joint P to C, the mid-point of \overline{AB} .

Proof

Statements	Reasons
In $\triangle ACP \leftarrow \rightarrow \triangle BCP$	
PA ≅ PB	given
$\overline{PC} \cong \overline{PC}$	Common
	3

M+ A line LM intersects the line segment AB at the point C. Such that $\overrightarrow{LM} \perp \overrightarrow{AB}$ and $\overrightarrow{AC} \cong \overrightarrow{BC}$. P is a point on \overrightarrow{LM} .

To Prove $\overline{\mathsf{PA}} \cong \overline{\mathsf{PB}}$

Construction

Join P to the points A and B.

Pr	oof	
		Statements
	In	$\triangle ACP \leftrightarrow \triangle BCP$
		$\overline{AC}\cong\overline{BC}$
		$\angle ACP \cong \angle BCP$
		$\overline{PC}\cong\overline{PC}$
		$\Delta ACP \cong \Delta BCP$
	He	nce $\overline{PA} \cong \overline{PB}$

Theorem 12.1.2 {Converse of Theorem 12.1.1}

is on the right bisector of it.

Given

Reasons
given
given $\overline{PC} \perp \overline{AB}$, so that each \angle at
$C = 90^{\circ}$
Common
S.A.S. postulate
(corresponding sides of congruent
triangles)

Any point equidistant from the end points of a line segment

 \overline{AB} is a line segment. Point P is such that $PA \cong \overline{PB}$.

Version: 1.1

eLearn.Punjab

$\overline{AC} \cong \overline{BC}$		Construction
$\therefore \Delta ACP \cong \Delta BCP$		S.S.S. ≅ S.S.S.
$\angle ACP \cong \angle BCP$	(i)	(corresponding angles o
		congruent triangles)
But m \angle ACP + m \angle BCP = 180°	(ii)	Supplementary angles
\therefore m \angle ACP = m \angle BCP = 90°		from (i) and (ii)
i.e., $\overline{PC} \perp \overline{AB}$	(iii)	mACP = 90° (proved)
Also $\overline{CA} \cong \overline{CB}$	(iv)	construction
\therefore PC is a right bisector of \overline{AB} .		from (iii) and (iv)
i.e., the point P is on the right I	oisector	
of AB.		

EXERCISE 12.1

- 1. Prove that the centre of a circle is on the right bisectors of each of its chords.
- 2. Where will be the centre of a circle passing through three noncollinear points? And why?
- 3. Three villages P, Q and R are not on the same line. The people of these villages want to make a Children Park at such a place which is equidistant from these three villages. After fixing the place of Children Park, prove that the Park is equidistant from the three villages.

Theorem 12.1.3

The right bisectors of the sides of a triangle are concurrent.

Given

 ΔABC

To Prove

concurrent.

Construction

Draw the right bisectors of \overline{AB} and \overline{BC} which meet each other at the point O. Join O to A, B and C.

Proc	of				
Statements			5	Reasons	
In	0/	$\overline{A} \cong \overline{OB}$	(i)	(Each point on right bisecto	r of a
				segment is equidistant fro	m its
				end points)	
	O	$\bar{B} \cong \overline{OC}$	(ii)	as in (i)	
	ŌĀ	$\overline{A} \cong \overline{OC}$	(iii)	from (i) and (ii)	
∴Po	oint O	is on the right	bisector of		
CA.			(iv)	(O is equidistant from A and	l C)
But	point	O is on the rig	ght bisector		
of Ā	Banc	of BC	(v)	construction	
Her	nce t	he right bi	sectors of	{from (iv) and (v)}	
the	three	e sides of a t	riangle are		
con	currei	nt at O.			
	Obse	erve that			
	(a)	The right bise	ectors of the	sides of an acute triangle	
		intersect each	n other insic	le the triangle.	
	(b) The right bisectors of the sides of a right triangle				
		intersect each	n other on tl	he hypotenuse.	
	(c)	The right bise	ectors of the	sides of an obtuse triangle	

Theorem 12.1.4 arms. Given

To Prove

Version: 1.1

- The right bisectors of the sides of an obtuse triangle
- intersect each other outside the triangle.

Any point on the bisector of an angle is equidistant from its

Version: 1.1

Construction

Draw $\overrightarrow{PR} \perp \overrightarrow{OA}$ and $\overrightarrow{PQ} \perp \overrightarrow{OB}$

Proof

Statements	Reasons
In $\triangle POQ \leftarrow \rightarrow \triangle POR$	
$\overline{OP} \cong \overline{OP}$	common
∠PQO≅∠PRO	construction
∠POQ ≅ ∠POR	given
$\therefore \qquad \Delta POQ \cong \Delta POR$	S.A.A. \cong S.A.A.
Hence $\overline{PQ} \cong \overline{PR}$	(corresponding sides of congruent
	triangles)

Theorem 12.1.5 (Converse of Theorem 12.1.4)

Any point inside an angle, equidistant from its arms, is on the bisector of it.

Given

Any point P lies inside $\angle AOB$ such that $\overrightarrow{PQ} \cong PR$, where $\overrightarrow{PQ} \perp \overrightarrow{OB}$ and $\overrightarrow{PR} \perp \overrightarrow{OA}$.

To Prove

Point P is on the bisector of $\angle AOB$.

Construction

Join P to O.

Proof

Statements	Reasons
In $\triangle POQ \leftarrow \rightarrow \triangle POR$	
∠PQO ≅ ∠PRO	given (right angles)
$\overline{PO} \cong \overline{PO}$	common
$\overline{PQ} \cong \overline{PR}$	given
$\therefore \Delta POQ \cong \Delta POR$	H.S. ≅ H.S.
Hence ∠POQ ≅ ∠POR	(corresponding angels of
	congruent triangles)
i.e., P is on the bisector of $\angle AOB$.	
(6)	

- the point O.
- and its altitude are concurrent.

Theorem 12.1.6

Given

ΔABC

To Prove

concurrent.

Construction

draw $\overline{IF} \perp \overline{AB}$, $\overline{ID} \perp \overline{BC}$ and $\overline{IE} \perp \overline{CA}$.

Statements	Reasons
ID ≅ IF	(Any point on bisector of an angle
	is equidistant from its arms)
Similarly,	
ĪD ≅ IĒ	
∴ ĪĒ≅ĪF	Each ID, proved.
So, the point I is on the bisector of	
∠A (i)	

Version: 1.1

EXERCSISE 12.2

1. In a quadrilateral ABCD, $\overline{AB} \cong \overline{BC}$ and the right bisectors of \overline{AD} , \overline{CD} meet each other at point N. Prove that \overline{BN} is a bisector of $\angle ABC$. 2. The bisectors of $\angle A$, $\angle B$ and $\angle C$ of a quadrilateral ABCP meet each other at point O. Prove that the bisector of $\angle P$ will also pass through

3. Prove that the right bisectors of congruent sides of an isoscles triangle

4. Prove that the altitudes of a triangle are concurrent.

The bisectors of the angles of a triangle are concurrent.

Draw the bisectors of $\angle B$ and $\angle C$ which intersect at point I. From I,

Version: 1.1

12. Line Bisectors and Angle Bisectors

Also the point / is on the bisectors	
of $\angle ABC$ and $\angle BCA$ (ii)	Construction
Thus the bisectors of $\angle A$, $\angle B$ and	
$\angle C$ are concurrent at I.	{from (i) and (ii)}
	•

Note. In practical geometry also, by constructing angle bisectors of a triangle, we shall verify that they are concurrent.

EXERCISE 12.3

- 1. Prove that the bisectors of the angles of base of an isoscles triangle intersect each other on its altitude.
- 2. Prove that the bisectors of two exterior and third interior angle of a triangle are concurrent.

REVIEW EXERCISE 12

- 1. Which of the following are true and which are false?
 - (i) Bisection means to divide into two equal parts.
 - (ii) Right bisection of line segment means to draw perpendicular which passes through the mid point......
- (iii) Any point on the right bisector of a line segment is not equidistant from its end points. •••••
- (iv) Any point equidistant from the end points of a line segment is on the right bisector of it.
- (v) The right bisectors of the sides of a triangle are not concurrent.
- (vi) The bisectors of the angles of a triangle are concurrent.
- (vii) Any point on the bisector of an angle is not equidistant from its arms.
- (viii) Any point inside an angle, equidistant from its arms, is on the bisector of it.

- 2. If \overrightarrow{CD} is a right bisector of line segment \overrightarrow{AB} , then
 - (i) mOA =
 - (ii) mAQ =
- Define the following 3.
 - (i) Bisector of a line segment
 - (ii) Bisector of an angle
- unknowns x° , y° and z° .
- find the unknowns *x* and *m*.
- 6. \overline{CD} is right bisector of the line segment AB.

 - (ii) If $\overline{\text{mBD}}$ = 4cm, then find $\overline{\text{mAD}}$.

- from its end points.
- the right bisector of it.

- bisector of it.

4. The given triangle ABC is equilateral triangle and \overline{AD} is bisector of angle A, then find the values of 5. In the given congruent triangles LMO and LNO, 2x +0 12 (i) If $m\overline{AB} = 6cm$, then find the $m\overline{AL}$ and $m\overline{LB}$. **SUMMARY** In this unit we stated and proved the following theorems:

• Any point on the right bisector of a line segment is equidistant

• Any point equidistant from the end points of a line segment is on

• The right bisectors of the sides of a triangle are concurrent.

• Any point on the bisector of an angle is equidistant from its arms.

• Any point inside an angle, equidistant from its arms, is on the

- The bisectors of the angles of a triangle are concurrent.
- Right bisection of a line segment means to draw a perpendicular at the mid point of line segment.
- Bisection of an angle means to draw a ray to divide the given angle into two equal parts.