CHAPTER

13

SIDES AND ANGLES OF A TRIANGLE

Animation 13.1: Sides and Angles of a Triangle Source & Credit: eLearn.punjab

Students Learning Outcomes

After studying this unit, the students will be able to:

- prove that if two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.
- prove that if two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.
- prove that the sum of the lengths of any two sides of a triangle is greater than the length of the third side.
- prove that from a point, out-side a line, the perpendicular is the shortest distance from the point on the line.

Introduction

Recall that if two sides of a triangle are equal, then the angles apposite to them are also equal and vice-versa. But in this unit we shall study some interesting inequality relations among sides and angles of a triangle.

Theorem 13.1.1

If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.

Given

In $\triangle ABC$, $\overrightarrow{mAC} > \overrightarrow{mAB}$

To Prove

 $m\angle ABC > m\angle ACB$

Construction

On \overline{AC} take a point D such that $\overline{AD} \cong \overline{AB}$. Join B to D so that $\triangle ADB$ is an isosceles triangle. Label $\angle 1$ and $\angle 2$ as shown in the given figure.

Proof

	Statements		Reasons
In ∆A	\BD		
m∠1 =	= m∠2	(i)	Angles opposite to congruent sides, (construction)
In ∆BC	CD, m∠ACB < m∠	<u>′</u> 2	
i.e. r	m∠2 > m∠ACB	(ii)	(An exterior angle of a triangle is greater than a non-adjacent interior angle)
∴ r	m∠1 > m∠ACB	(iii)	By (i) and (ii)
But			
r	m∠ABC = m∠1 +	m∠DBC	Postulate of addition of angles.
∴ r	m∠ABC > m∠1	(iv)	
.∴. r	m∠ABC > m∠1 >	m∠ACB	By (iii) and (iv)
Hence	e m∠ABC > m∠A	СВ	(Transitive property of inequality of
			real numbers)

Example 1

Prove that in a scalene triangle, the angle opposite to the largest side is of measure greater than 60°. (i.e., two-third of a right-angle)

Given

In ABC,
$$\overline{\text{mAC}} > \overline{\text{mAB}}$$
 $\overline{\text{mAC}}$, $\overline{\text{mAB}} > \overline{\text{mBC}}$.

To Prove

 $m\angle B > 60^{\circ}$.

Proof

Statements	Reasons
In ΔABC	
m∠B > m∠C	mAC > mAB (given)
m∠B > m∠A	mAC > mBC (given)
But $m\angle A + m\angle B + m\angle C = 180^{\circ}$	∠A, ∠B, ∠C are the angles of ∆ ABC
$\therefore m \angle B + m \angle B + m \angle B > 180^{\circ}$	$m\angle B > m\angle C$, $m\angle B > m\angle A$ (proved)
Hence m∠B > 60°	180°/3 = 60°

Example 2

In a quadrilateral ABCD, \overline{AB} is the longest side and \overline{CD} is the shortest side. Prove that m \angle BCD > m \angle BAD.

Given

In quad. ABCD, \overline{AB} is the longest side and \overline{CD} is the shortest side.

To Prove

 $m\angle BCD > m\angle BAD$

Construction

Joint A to C.

Name the angles $\angle 1$, $\angle 2$, $\angle 3$ and $\angle 4$ as shown in the figure.

Proof

Statements	Reasons
	mAB > mBC (given)
In ΔACD, m∠3 > m∠1 II	mAD > mCD (given)
\therefore m \angle 4 + m \angle 3 > m \angle 2 + m \angle 1	
Hence m∠BCD > m∠BAD	∵ ∫ m∠4 + m∠3 = m∠BCD
	l m∠2 + m∠1 = m∠BAD

Theorem 13.1.2

(Converse of Theorem 13.1.1)

If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.

Given

In $\triangle ABC$, $m\angle A > m\angle B$

 $m\overline{BC} > m\overline{AC}$

Proof

Statements	Reasons
If , mBC ≯ mAC, then	
either (i) $m\overline{BC} = m\overline{AC}$	(Trichotomy property of real numbers)
or (ii) m \overline{BC} < m \overline{AC}	
From (i) if $\overline{\text{MBC}} = \overline{\text{MAC}}$, then	
m∠A = m∠B	(Angles opposite to congruent sides are
	congruent)
which is not possible.	Contrary to the given.
From (ii) if mBC < mAC, then	
m∠A < m∠B	(The angle opposite to longer side is
	greater than angle opposite to smaller
	side)
This is also not possible.	Contrary to the given.
∴ m BC ≠ m AC	
and mBC ≮ mAC	
Thus m \overline{BC} > m \overline{AC}	Trichotomy property of real numbers.

Corollaries

- (i) The hypotenuse of a right angled triangle is longer than each of the other two sides.
- (ii) In an obtuse angled triangle, the side opposite to the obtuse angle is longer than each of the other two sides.

Example

ABC is an isosceles triangle with base \overline{BC} . On \overline{BC} a point D is taken away from C. A line segment through D cuts \overline{AC} at L and \overline{AB} at M. Prove that $\overline{mAL} > \overline{mAM}$.

Given

In $\triangle ABC$, $\overline{AB} \cong \overline{AC}$

D is a point on \overrightarrow{BC} away from C.

A line segment through D cuts \overline{AC} at L and \overline{AB} at M.

To Prove

mAL > mAM

Proof

<u> </u>		
Statemen	ts	Reasons
In ∆ABC		
∠B ≅ ∠2	I	$\overline{AB} \cong \overline{AC}$ (given)
In ∆MBD		
$m\angle 1 > m\angle B$	II	(∠1 is an ext. ∠ and ∠B is its internal opposite ∠)
\therefore m $\angle 1 > m \angle 2$.	III	From I and II
In ΔLCD,		
m∠2 > m∠3	IV	$(\angle 2 \text{ is an ext. } \angle \text{ and } \angle 3 \text{ is its internal opposite } \angle)$
∴ m∠1 > m∠3	V	From III and IV
But ∠3 ≅ ∠4	V I	Vertical angles
∴ m∠1 > m∠4		From V and VI
Hence $m\overline{AL} > m\overline{AM}$	<u> </u>	In ∆ALM, m∠1 > m∠4 (proved)

Theorem 13.1.3

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Given

 ΔABC

To Prove

- (i) $\overline{MAB} + \overline{MAC} > \overline{MBC}$
- (ii) $\overline{MAB} + \overline{MBC} > \overline{MAC}$
- (iii) mBC + \overline{mCA} > \overline{mAB}

Construction

Take a point D on \overrightarrow{CA} such that $\overrightarrow{AD} \cong \overrightarrow{AB}$. Join B to D and name the angles. $\angle 1$, $\angle 2$ as shown in the given figure.

Proof

Statements	Reasons
In ∆ABD,	
∠1 ≅ ∠2(i)	$\overline{AD} \cong \overline{AB}$ (construction)
m∠DBC > m∠1(ii)	m∠DBC = m∠1 + m∠ABC
∴ m∠DBC > m∠2(iii)	From (i) and (ii)
In ∆DBC	
mCD > mBC	By (iii)
i.e., mAD + mAC > mBC	$m\overline{CD} = m\overline{AD} + m\overline{AC}$
Hence mAB + mAC > mBC	$m\overline{AD} = m\overline{AB}$ (construction)
Similarly,	
$\overline{MAB} + \overline{MBC} > \overline{MAC}$	
and	
$\overline{MBC} + \overline{MCA} > \overline{MAB}$	

Example 1

Which of the following sets of lengths can be the lengths of the sides of a triangle?

- (a) 2 cm, 3 cm, 5 cm (b) 3 cm, 4 cm, 5 cm, (c) 2 cm, 4 cm, 7 cm,
- (a) : 2 + 3 = 5
 - :. This set of lengths cannot be those of the sides of a triangle.
- (b) \therefore 3+4>5,3+5>4,4+5>3
 - ∴ This set can form a triangle
- (c) : 2 + 4 < 7
 - :. This set of lengths cannot be the sides of a triangle.

Example 2

Prove that the sum of the measures of two sides of a triangle is greater than twice the measure of the median which bisects the third side.

Given

In $\triangle ABC$, median \overline{AD} bisects side \overline{BC} at D.

To Prove

 $\overline{MAB} + \overline{MAC} > 2\overline{MAD}$.

Construction

On \overrightarrow{AD} take a point E, such that $\overrightarrow{DE} \cong \overrightarrow{AD}$. Join C to E. Name the angles $\angle 1$, $\angle 2$ as shown in the figure.

Proof

Statements	Reasons
In $\triangle ABD \longleftrightarrow \triangle ECD$	
$\overline{BD} \cong \overline{CD}$	Given
∠1 ≅ ∠2	Vertical angles
$\overline{AD}\cong\overline{ED}$	Construction
$\triangle ABD \cong \triangle ECD$	S.A.S. Postulate
$\overline{AB} \cong EC$ I	Corresponding sides of $\cong \Delta s$
$\overline{MAC} + \overline{MEC} > \overline{MAE}$ II	ACE is a triangle
$\overline{MAC} + \overline{MAB} > \overline{MAE}$	From I and II
Hence m \overline{AC} + m \overline{AB} > 2mAD	$\overline{MAE} = 2m\overline{AD}$ (construction)

Example 3

Prove that the difference of measures of two sides of a triangle is less than the measure of the third side.

Given

 ΔABC

To Prove

$$m\overline{AC} - m\overline{AB} < m\overline{BC}$$

 $m\overline{BC} - m\overline{AB} < m\overline{AC}$
 $m\overline{BC} - m\overline{AC} > m\overline{AB}$

Proof:

Statements	Reasons
$\overline{MAB} + \overline{MBC} > \overline{MAC}$	ABC is a triangle
$(m\overline{AB} + m\overline{BC} - m\overline{AB})$	Subtracting mAB from both sides
$>(m\overline{AC} - m\overline{AB})$	
\therefore mBC>(mAC – mAB)	
or $\overline{MAC} - \overline{MAB} < \overline{MBC}$ I	$ a>b\Rightarrow b < a$
Similarly	
$\overline{\text{mBC}} - \overline{\text{mAB}} < \overline{\text{mAC}}$	
$\overline{mBC} - \overline{mAC} < \overline{mAB}$	Reason similar to I

EXERCISE 13.1

- 1. Two sides of a triangle measure 10 cm and 15 cm. Which of the following measure is possible for the third side?
 - (a) 5 cm (b) 20 cm (c) 25 cm (d) 30 cm
- 2. O is an interior point of the $\triangle ABC$. Show that $m\overline{OA} + m\overline{OB} + m\overline{OC} > \frac{1}{2}(m\overline{AB} + m\overline{BC} + m\overline{CA})$
- 3. In the \triangle ABC, m \angle B = 70° and m \angle C = 45°. Which of the sides of the triangle is longest and which is the shortest?
- 4. Prove that in a right-angled triangle, the hypotenuse is longer than each of the other two sides.
- 5. In the triangular figure, $\overline{MAB} > \overline{MAC}$. \overline{BD} and \overline{CD} are the bisectors of B and C respectively. Prove that $\overline{MBD} > \overline{MDC}$.

Theorem 13.1.4

From a point, outside a line, the perpendicular is the shortest distance from the point to the line.

Given

A line AB and a point C (not lying on \overrightarrow{AB}) and a point D on \overrightarrow{AB} such that $\overrightarrow{CD} \perp \overrightarrow{AB}$.

To Prove

 \overrightarrow{mCD} is the shortest distance form the point C to \overrightarrow{AB} .

Construction

Take a point E on \overrightarrow{AB} . Join C and E to form a \triangle CDE.

Proof

Statements	Reasons
In ΔCDE	
m∠CDB > m∠CED	(An exterior angle of a triangle is greater than non adjacent interior angle).
But m∠CDB = m∠CDE	Supplement of right angle.
∴ m∠CDE > m∠CED	
or m∠CED < m∠CDE	a > b ⇒ b< a
or mCD < mCE	Side opposite to greater angle is
	greater.
But E is any point on \overrightarrow{AB}	
Hence mCD is the shortest	
distance from C to \overrightarrow{AB} .	

Note:

- (i) The distance between a line and a point not on it, is the length of the perpendicular line segment from the point to the line.
- (ii) The distance between a line and a point lying on it is zero.

EXERCISE 13.2

1. In the figure, P is any point and AB is a line. Which of the following is the shortest distance between the point P and the line AB?

- (a) $m\overline{PL}$ (b) $m\overline{PM}$ (c) $m\overline{NP}$ (d) $m\overline{PO}$
- 2. In the figure, P is any point lying away from the line AB. Then $m\overline{PL}$ will be the shortest distance if
 - (a) $m\angle PLA = 80^{\circ}$
- (b) m \angle PLB = 100°
- (c) $m\angle PLA = 90^{\circ}$
- In the figure, \overline{PL} is prependicular to the line \overline{AB} and $\overline{mLN} > \overline{mLM}$.

 Prove that $\overline{mPN} > \overline{mPM}$.

REVIEW EXERCISE 13

- 1. Which of the following are true and which are false?
 - (i) The angle opposite to the longer side is greater.
 - (ii) In a right-angled triangle greater angle is of 60°.
 - (iii) In an isosceles right-angled triangle, angles other than right angle are each of 45°.
 - (iv) A triangle having two congruent sides is called equilateral triangle.
 - (v) A perpendicular from a point to line is shortest distance. ...
 - (vi) Perpendicular to line form an angle of 90°.
 - (vii) A point out side the line is collinear.
 - (viii) Sum of two sides of triangle is greater than the third.
 - (ix) The distance between a line and a point on it is zero.
 - (x) Triangle can be formed of lengths 2 cm, 3 cm and 5 cm. ...
- 2. What will be angle for shortest distance from an outside point to the line?
- 3. If 13 cm, 12 cm, and 5 cm are the lengths of a triangle, then verify that difference of measures of any two sides of a triangle is less than the measure of the third side.
- 4. If 10 cm, 6 cm and 8 cm are the lengths of a triangle, then verify that sum of measures of two sides of a triangle is greater than the third side.
- 5. 3 cm, 4 cm and 7 cm are not the lengths of the triangle. Give the reason.

Version: 1.1

6. If 3 cm and 4 cm are lengths of two sides of a right angle triangle, then what should be the third length of the triangle.

SUMMARY

In this unit we stated and proved the following theorems:

- If two sides of a triangle are unequal in length, the longer side has an angle of greater measure opposite to it.
- If two angles of a triangle are unequal in measure, the side opposite to the greater angle is longer than the side opposite to the smaller angle.
- The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
- From a point, outside a line, the perpendicular is the shortest distance from the point to the line.