# Unit-3

## **VARIATIONS**

### In this unit, students will learn how to

- ≥ define ratio, proportions and variations (direct and inverse).
- ≥ find 3 <sup>rd</sup>, 4 <sup>th</sup>, mean and continued proportion.
- apply theorems of invertendo, alternendo, componendo, dividendo and componendo & dividendo to find proportions.
- 🗷 define joint variation.
- ≥ solve problems related to joint variation.
- use k-method to prove conditional equalities involving proportions.
- solve real life problems based on variations.

- 3.1 Ratio, Proportions and Variations
- 3.1(i) Define (a) ratio, (b) proportion and (c) variations (direct and inverse).
- (a) Ratio

A relation between two quantities of the same kind (measured in same unit) is called **ratio**. If a and b are two quantities of the same kind and b is not zero, then the ratio of a and

b is written as a:b or in fraction  $\frac{a}{b}$ 

e.g., if a hockey team wins 4 games and loses 5, then the ratio of the games won to games lost is 4:5 or in fraction  $\frac{4}{5}$ 

#### Remember that:

- (i) The **order** of the elements in a ratio is important.
- (ii) In ratio a:b, the first term a is called **antecedent** and the second term b is called **consequent**.
- (iii) A ratio has no units

Example 1: Find the ratio of

- (i) 200gm to 700 gm
- (ii) 1km to 600m

Solution: (i) Ratio of 200gm to 700 gm

$$200:700 = \frac{200}{700} = \frac{2}{7} = 2:7$$

Where 2: 7 is the simplest (lowest) form of the ratio 200: 700.

(ii) Ratio of 1km to 600m

Since 
$$1 \text{km} = 1000 \text{m}$$

then 
$$1000:600 = \frac{1000}{600} = \frac{10}{6} = \frac{5}{3} = 5:3$$

or 
$$1 \text{km} : 600 \text{m} = 1000:600$$

$$=\frac{1000}{100}:\frac{600}{100}=10:6=5:3$$

**Example 2:** Find a, if the ratios a + 3 : 7 + a and 4 : 5 are equal.

- **Solution:** Since the ratios a + 3 : 7 + a and 4 : 5 are equal.
  - : in fraction form

$$\frac{a+3}{7+a} = \frac{4}{5}$$

$$5(a+3) = 4(7+a)$$

$$5a + 15 = 28 + 4a$$

$$5a - 4a = 28 - 15$$

$$a = 13$$

Thus the given ratios will be equal if a = 13.

**Example 3:** If 2 is added in each number of the ratio 3:4, we get a new ratio 5:6. Find the numbers.

Solution: Because the ratio of two numbers is 3 : 4.

Multiply each number of the ratio with x. Then the numbers be 3x, 4x and the ratio becomes 3x:4x. Now according to the given condition

$$\frac{3x+2}{4x+2} = \frac{5}{6}$$
$$6(3x+2) = 5(4x+2)$$

$$6(3x+2) = 5(4x+2) \implies 18x+12 = 20x+10$$

$$18x - 20x = 10 - 12 \qquad \Rightarrow -2x = -2 \Rightarrow x = 1$$

Thus the required numbers are

$$3x = 3(1) = 3$$

and 
$$4x = 4(1) = 4$$
.

**Example 4:** Find the ratio 3a + 4b : 5a + 7b if a : b = 5 : 8.

Solution: Given that a:b=5:8 or  $\frac{a}{b}=\frac{5}{8}$ 

Now  $3a + 4b : 5a + 7b = \frac{3a + 4b}{5a + 7b}$ 

 $= \frac{\frac{3a+4b}{b}}{\frac{5a+7b}{b}} = \frac{3\left(\frac{a}{b}\right)+4\left(\frac{b}{b}\right)}{5\left(\frac{a}{b}\right)+7\left(\frac{b}{b}\right)}$  (Dividing numerator and denominator by b)

$$= \frac{3\left(\frac{5}{8}\right) + 4(1)}{5\left(\frac{5}{8}\right) + 7(1)} \qquad \left(\because \frac{a}{b} = \frac{5}{8}\right)$$

$$=\frac{\frac{15}{8}+4}{\frac{25}{8}+7}=\frac{\frac{15+32}{8}}{\frac{25+56}{8}}=\frac{47}{81}$$

Hence,

$$3a + 4b : 5a + 7b = 47 : 81.$$

#### (b) **Proportion**

A **proportion** is a statement, which is expressed as an equivalence of two ratios.

If two ratios a:b and c:d are equal, then we can write a:b=c:d

Where quantities a, d are called **extremes**, while b, c are called **means**.

Symbolically the proportion of a, b, c and d is written as

or 
$$a:b=c:d$$

or 
$$\frac{a}{b} = \frac{c}{d}$$

i.e., 
$$ad = bc$$

This shows that, **Product of extremes = Product of means.** 

Example 5: Find x, if 60m : 90m :: 20kg : x kg

Solution: Given that 60m : 90m :: 20kg : x kg

60:90=20:x

: Product of extremes = Product of means

 $\therefore \qquad 60x = 90 \times 20$ 

$$x = \frac{90 \times 20}{60} = 30$$
 i.e., x is 30 kg

Example 6: Find the cost of 15kg of sugar, if 7 kg of sugar costs 560 rupees.

Solution: Let the cost of 15kg of sugar be x-rupees.

Then in proportion form

15kg: 7kg:: Rs. x: Rs. 560

15:7=x:560

: Product of extremes = Product of means

 $\therefore 15 \times 560 = 7x$ 

$$7x = 15 \times 560$$

$$x = \frac{15 \times 560}{7} = 15(80) = 1200$$

Thus, x = Rs. 1200.

# EXERCISE 3.1

- 1. Express the following as a ratio a: b and as a fraction in its simplest (lowest) form.
  - (i) Rs. 750, Rs. 1250
- (ii) 450cm, 3 m
- (iii) 4kg, 2kg 750gm
- (*iv*) 27min. 30 sec, 1 hour

- (v) 75°, 225°
- 2. In a class of 60 students, 25 students are girls and remaining students are boys. Compute the ratio of
  - (i) boys to total students
- (ii) boys to girls
- 3. If 3(4x 5y) = 2x 7y, find the ratio x : y.
- 4. Find the value of p, if the ratios 2p + 5: 3p + 4 and 3: 4 are equal.
- 5. If the ratios 3x + 1 : 6 + 4x and 2 : 5 are equal. Find the value of x.

- 6. Two numbers are in the ratio 5:8. If 9 is added to each number, we get a new ratio 8:11. Find the numbers.
- 7. If 10 is added in each number of the ratio 4:13, we get a new ratio 1:2. What are the numbers?
- 8. Find the cost of 8kg of mangoes, if 5kg of mangoes cost Rs. 250.
- 9. If a: b = 7: 6, find the value of 3a + 5b: 7b - 5a.
- 10. Complete the following:

(i) If 
$$\frac{24}{7} = \frac{6}{x}$$
, then  $4x =$ \_\_\_\_\_

(ii) If 
$$\frac{5a}{3x} = \frac{15b}{y}$$
, then  $ay =$ \_\_\_\_\_

(iii) If 
$$\frac{9pq}{2lm} = \frac{18p}{5m}$$
, then  $5q =$ \_\_\_\_\_

- Find *x* in the following proportions. 11.
  - *(i)*

(ii) 
$$\frac{3x-1}{7}:\frac{3}{5}::\frac{2x}{3}:\frac{7}{5}$$

(iii) 
$$\frac{x-3}{2}:\frac{5}{x-1}::\frac{x-1}{3}:\frac{4}{x+4}$$

$$3x - 2 : 4 :: 2x + 3 : 7$$
 (ii) 
$$\frac{3x - 1}{7} : \frac{3}{5} :: \frac{2x}{3} : \frac{7}{5}$$
 
$$\frac{x - 3}{2} : \frac{5}{x - 1} :: \frac{x - 1}{3} : \frac{4}{x + 4}$$
 (iv) 
$$p^{2} + pq + q^{2} : x :: \frac{p^{3} - q^{3}}{p + q} : (p - q)^{2}$$

(v) 
$$8-x:11-x::16-x:25-x$$

(c) Variation:

The word variation is frequently used in all sciences. There are two types of (i) Direct variation (ii) Inverse variation. variations:

(i) **Direct Variation** 

If two quantities are related in such a way that increase (decrease) in one quantity causes increase (decrease) in the other quantity, then this variation is called direct variation.

In otherwords, if a quantity y varies directly with regard to a quantity x. We say that y is **directly proportional** to x and is written as  $y \propto x$  or y = kx. i.e.,  $\frac{y}{x} = k$ ,  $k \neq 0$ .

The sign ∞ read as "varies as" is called the sign of proportionality or variation, while  $k \neq 0$  is known as constant of variation.

- Faster the speed of a car, longer the distance it covers. (*i*) e.g.,
  - The smaller the radius of the circle, smaller the circumference is. (ii)

Example 1: Find the relation between distance d of a body falling from rest varies directly as the square of the time t, neglecting air resistance. Find k, if d = 16 feet for t = 1 sec. Also derive a relation between d and t.

Solution: Since d is the distance of the body falling from rest in time t.

Then under the given condition

$$d \propto t^2$$

i.e.,

$$d = kt^2$$

(i)

Since

$$d = 16$$
 feet and  $t = 1$  sec

Then equation (i) becomes

$$16 = k(1)^2$$

i.e.,

$$k = 16$$

put in eq. (i)

$$d = 16t^2$$

Which is a relationship between the distance d and time t.

### **Activity:**

From the above example:

- Find time t, when d = 64 feet
- (ii) Find distance d, when t = 3 sec

Example 2: If y varies directly as x, find

- (*a*) the equation connecting x and y.
- the constant of variation k and the relation between x and y, *(b)* when x = 7 and y = 6
- (c) the value of y, when x = 21.

Solution: (a) Given that y varies directly as x.

Therefore  $y \propto x$ , i.e., y = kx, where k is constant of variation.

(b) Putting x = 7 and y = 6 in equation

$$y = kx$$

We get 6 = 7k  $\Rightarrow k = \frac{6}{7}$ 

Put in eq. (i)  $y = \frac{6}{7}x$ 

(ii)

(c) Now put x = 21, in equation (ii)

Then  $y = \frac{6}{7}(21) = 18$ 

**Example 3:** Given that A varies directly as the square of r and  $A = \frac{1782}{7}$  cm<sup>2</sup>, when r = 9cm.

If r = 14cm, then find A.

Solution: Since A varies directly as square of r

$$\therefore A \propto r^2$$

or 
$$A = kr^2$$

(i)

$$\frac{1782}{7} = k (9)^2$$

$$\frac{1782}{7 \times 81} = k \qquad \text{or} \qquad k = \frac{22}{7}$$

Put 
$$k = \frac{22}{7}$$
 and  $r = 14$ cm in eq. (i)  
 $A = \frac{22}{7} (14)^2 = \frac{22}{7} \times 14 \times 14 = 616 \text{ cm}^2$ 

Example 4: If y varies directly as cube of x and y = 81 when x = 3, so evaluate y when x = 5. Solution: Given that y varies directly as cube of x.

*i.e.*, 
$$y \propto x^3$$
 or  $y = kx^3$  (i) (where k is constant)

Put y = 81 and x = 3 in (i)

$$81 = k (3)^3 \implies 27k = 81 \implies k = 3$$

Now put k = 3 and x = 5 in eq. (i)

$$y = 3(5)^3 = 375$$

#### (ii) Inverse Variation

If two quantities are related in such a way that when one quantity increases, the other decreases is called **inverse variation**.

In otherwords, if a quantity y varies inversely with regard to quantity x. We say that y is inversely proportional to x or y varies inversely as x and is written as  $y \propto \frac{1}{x}$  or  $y = \frac{k}{x}$ .

i.e., xy = k, where  $k \ne 0$  is the constant of variation.

**Example 1:** If y varies inversely as x and y = 8, when x = 4. Find y, when x = 16.

Solution: Since y varies inversely as x, therefore

$$y \propto \frac{1}{x}$$
 or  $y = \frac{k}{x}$  (i)

$$\Rightarrow xy = k$$
 (ii)

Putting y = 8 and x = 4 in (ii)

$$k = (x) (y)$$
  
= (4)(8) = 32

Now put 
$$k = 32$$
 and  $x = 16$  in (i)  $\Rightarrow y = \frac{32}{16} = 2$ 

Example 2: If y varies inversely as  $x^2$  and y = 16, when x = 5, so find x, when y = 100.

Solution: Since y varies inversely as  $x^2$ , therefore

$$y \propto \frac{1}{x^2}$$
 or  $y = \frac{k}{x^2}$   
 $k = x^2y$  (i)

Put x = 5 and y = 16 in (i)

$$k = (5)^2 \times 16$$

$$k = 400$$

Now put k = 400 and y = 100 in (i)

$$400 = 100x^2$$
 or  $x^2 = \frac{400}{100} = 4$   
 $x = \pm 2$ 

# EXERCISE 3.2

- 1. If y varies directly as x, and y = 8 when x = 2, find
  - (i) y in terms of x
- (ii) y when x = 5
- (iii) x when y = 28
- 2. If  $y \propto x$ , and y = 7 when x = 3 find
  - (i) y in terms of x
- (ii) x when y = 35 and y when x = 18
- 3. If  $R \propto T$  and R = 5 when T = 8, find the equation connecting R and T. Also find R when T = 64 and T when R = 20.
- 4. If  $R \propto T^2$  and R = 8 when T = 3, find R when T = 6.
- 5. If  $V \propto R^3$  and V = 5 when R = 3, find R when V = 625.
- 6. If w varies directly as  $u^3$  and w = 81 when u = 3. Find w when u = 5.
- 7. If y varies inversely as x and y = 7 when x = 2, find y when x = 126.
- 8. If  $y \propto \frac{1}{x}$  and y = 4 when x = 3, find x when y = 24.
- 9. If  $w \propto \frac{1}{z}$  and w = 5 when z = 7, find w when  $z = \frac{175}{4}$ .
- 10.  $A \propto \frac{1}{r^2}$  and A = 2 when r = 3, find r when A = 72.
- 11.  $a \propto \frac{1}{b^2}$  and a = 3 when b = 4, find a when b = 8.
- 12.  $V \propto \frac{1}{r^3}$  and V = 5 when r = 3, find V when r = 6 and r when V = 320.
- 13.  $m \propto \frac{1}{n^3}$  and m = 2 when n = 4, find m when n = 6 and n when m = 432.

### 3.1(ii) Find $3^{rd}$ , $4^{th}$ , mean and continued proportion:

We are already familiar with proportions that if quantities a, b, c and d are in proportion, then a:b::c:d

*i.e.*, product of extremes = product of means

#### **Third Proportional**

If three quantities a, b and c are related as a:b::b:c, then c is called the third proportion.

**Example 1:** Find a third proportional of x + y and  $x^2 - y^2$ .

Solution: Let c be the third proportional,

then 
$$x + y : x^2 - y^2 :: x^2 - y^2 : c$$
  
 $c(x + y) = (x^2 - y^2)(x^2 - y^2)$ 

$$c = \frac{(x^2 - y^2)(x^2 - y^2)}{x + y} = \frac{(x^2 - y^2)(x - y)(x + y)}{(x + y)}$$
$$c = (x^2 - y^2)(x - y) = (x + y)(x - y)^2$$

#### **Fourth Proportional**

If four quantities a, b, c and d are related as

Then *d* is called the fourth proportional.

Example 2: Find fourth proportional of  $a^3 - b^3$ , a + b and  $a^2 + ab + b^2$ 

Solution: Let x be the fourth proportional,

then 
$$(a^3 - b^3) : (a + b) :: (a^2 + ab + b^2) : x$$
  
i.e.,  $x (a^3 - b^3) = (a + b) (a^2 + ab + b^2)$   

$$x = \frac{(a + b) (a^2 + ab + b^2)}{a^3 - b^3} = \frac{(a + b) (a^2 + ab + b^2)}{(a - b) (a^2 + ab + b^2)}$$

$$x = \frac{a + b}{a - b}$$

#### **Mean Proportional**

If three quantities a, b and c are related as a:b::b:c,

then b is called the mean proportional.

Example 3: Find the mean proportional of  $9p^6q^4$  and  $r^8$ .

Solution: Let m be the mean proportional,

then 
$$9p^6q^4 : m :: m : r^8$$
  
or  $m \cdot m = 9p^6q^4 (r^8)$   
 $m^2 = 9p^6q^4r^8$   
 $m = \pm \sqrt{9p^6q^4r^8} = \pm 3p^3q^2r^4$ 

#### **Continued Proportion**

If three quantities a, b and c are related as

$$a:b::b:c$$
,

where a is first, b is the mean and c is the third proportional, then a, b and c are in continued proportion.

**Example 4:** Find p, if 12, p and 3 are in continued proportion.

Solution: Since 12, p and 3 are in continued proportion.

:. 
$$12:p::p:3$$
 *i.e.*,  $p.p = (12)(3) \Rightarrow p^2 = 36$   
Thus,  $p = \pm 6$ 



1. Find a third proportional to

(ii) 
$$a^3, 3a^2$$

(*iii*) 
$$a^2 - b^2$$
,  $a - b$ 

$$(iv)$$
  $(x-y)^2$ ,  $x^3-y^3$ 

(v) 
$$(x+y)^2$$
,  $x^2 - xy - 2y^2$ 

(vi) 
$$\frac{p^2 - q^2}{p^3 + q^3}, \frac{p - q}{p^2 - pq + q^2}$$

2. Find a fourth proportional to

(ii) 
$$4x^4, 2x^3, 18x^5$$

(iii) 
$$15a^5b^6$$
,  $10a^2b^5$ ,  $21a^3b^3$ 

(iv) 
$$x^2 - 11x + 24$$
,  $(x - 3)$ ,  $5x^4 - 40x^3$ 

(v) 
$$p^3 + q^3$$
,  $p^2 - q^2$ ,  $p^2 - pq + q^2$ 

(vi) 
$$(p^2-q^2)(p^2+pq+q^2)$$
,  $p^3+q^3$ ,  $p^3-q^3$ 

3. Find a mean proportional between

(*ii*) 
$$20x^3y^5$$
,  $5x^7y$ 

(iii) 
$$15p^4qr^3$$
,  $135q^5r^7$ 

(iv) 
$$x^2 - y^2, \frac{x - y}{x + y}$$

4. Find the values of the letter involved in the following continued proportions.

(*i*) 
$$5, p, 45$$

$$(ii)$$
 8,  $x$ , 18

(*iii*) 
$$12, 3p - 6, 27$$

$$(iv)$$
 7,  $m-3$ , 28

### 3.2 Theorems on Proportions

If four quantities a, b, c and d form a proportion, then many other useful properties may be deduced by the properties of fractions.

(1) Theorem of Invertendo

If a : b = c : d, then b : a = d : c

**Example 1:** If 3m : 2n = p : 2q, then

$$2n:3m=2q:p$$

**Solution:** Since 3m:2n=p:2q

$$\therefore \frac{3m}{2n} = \frac{p}{2q}$$

By invertendo theorem

$$\frac{2n}{3m} = \frac{2q}{p}$$

i.e., 
$$2n:3m=2q:p$$

(2) Theorem of Alternando

If a : b = c : d, then a : c = b : d

**Example 2:** If 3p + 1 : 2q = 5r : 7s, then prove that 3p + 1 : 5r = 2q : 7s

**Solution:** Given that 3p + 1 : 2q = 5r : 7s

Then 
$$\frac{3p+1}{2q} = \frac{5r}{7s}$$

By alternando theorem

$$\frac{3p+1}{5r} = \frac{2q}{7s}$$

Thus, 3p + 1:5r = 2q:7s

(3) Theorem of Componendo

If a:b=c:d, then

(*i*) 
$$a + b : b = c + d : d$$

and (ii) 
$$a: a + b = c: c + d$$

**Example 3:** If m + 3 : n = p : q - 2, then

$$m + n + 3 : n = p + q - 2 : q - 2$$

Solution: Since m + 3 : n = p : q - 2

$$\therefore \frac{m+3}{n} = \frac{p}{q-2}$$

By componendo theorem

$$\frac{(m+3)+n}{n} = \frac{p+(q-2)}{q-2}$$

or 
$$\frac{m+n+3}{n} = \frac{p+q-2}{q-2}$$

Thus m+n+3: n=p+q-2: q-2

(4) Theorem of Dividendo

If a:b=c:d, then

(*i*) 
$$a - b : b = c - d : d$$

and (ii) 
$$a: a-b=c: c-d$$

**Example 4:** If 
$$m + 1 : n - 2 = 2p + 3 : 3q + 1$$
.

Then 
$$m-n+3: n-2=2p-3q+2: 3q+1$$

**Solution:** Given that m + 1 : n - 2 = 2p + 3 : 3q + 1

Then 
$$\frac{m+1}{n-2} = \frac{2p+3}{3q+1}$$

By dividendo theorem

$$\frac{m-n+3}{n-2} = \frac{2p-3q+2}{3q+1}$$

Thus m - n + 3 : n - 2 = 2p - 3q + 2 : 3q + 1

(5) Theorem of Componendo-dividendo

If a:b=c:d, then

(i) 
$$a + b : a - b = c + d : c - d$$

and (ii) a - b : a + b = c - d : c + d

Example 5: If m: n = p: q.

Then prove that 3m + 7n : 3m - 7n = 3p + 7q : 3p - 7q

**Solution:** Since m: n = p: q

or 
$$\frac{m}{n} = \frac{p}{q}$$

Multiplying both sides by  $\frac{3}{7}$ , we get

$$\frac{3m}{7n} = \frac{3p}{7q}$$

Then using componendo-dividendo theorem

$$\frac{3m + 7n}{3m - 7n} = \frac{3p + 7q}{3p - 7q}$$

Thus 3m + 7n : 3m - 7n = 3p + 7q : 3p - 7q

**Example 6:** If 5m + 3n : 5m - 3n = 5p + 3q : 5p - 3q,

then show that m: n = p: q

**Solution:** Given that 5m + 3n : 5m - 3n = 5p + 3q : 5p - 3q

or 
$$\frac{5m+3n}{5m-3n} = \frac{5p+3q}{5p-3q}$$

By componendo-dividendo theorem

$$\frac{(5m+3n)+(5m-3n)}{(5m+3n)-(5m-3n)} = \frac{(5p+3q)+(5p-3q)}{(5p+3q)-(5p-3q)}$$

$$\frac{5m+3n+5m-3n}{5m+3n-5m+3n} = \frac{5p+3q+5p-3q}{5p+3q-5p+3q}$$

$$\frac{10m}{6n} = \frac{10p}{6q}$$

Multiplying both sides by  $\frac{6}{10}$ .

$$\frac{m}{n} = \frac{p}{q}$$

*i.e.*, 
$$m: n = p: q$$

Example 7: Using theorem of componendo-dividendo, find the value of

$$\frac{m+3p}{m-3p} + \frac{m+2q}{m-2q}$$
, if  $m = \frac{6pq}{p+q}$ .

Solution: Since 
$$m = \frac{6pq}{p+q}$$
 or  $m = \frac{(3p)(2q)}{p+q}$  (i)

$$\therefore \frac{m}{3p} = \frac{2q}{p+q}$$

By componendo-dividendo theorem

$$\frac{m+3p}{m-3p} = \frac{2q+(p+q)}{2q-(p+q)} = \frac{2q+p+q}{2q-p-q}$$

$$\frac{m+3p}{m-3p} = \frac{p+3q}{q-p}$$
(ii)

Again from eq. (i), we have

$$\frac{m}{2q} = \frac{3p}{p+q}$$

By componendo-dividendo theorem

$$\frac{m+2q}{m-2q} = \frac{3p+(p+q)}{3p-(p+q)} = \frac{3p+p+q}{3p-p-q}$$

$$\frac{m+2q}{m-2q} = \frac{4p+q}{2p-q}$$
(iii)

Adding (ii) and (iii)

$$\begin{split} \frac{m+3p}{m-3p} + \frac{m+2q}{m-2q} &= \frac{p+3q}{q-p} + \frac{4p+q}{2p-q} = -\frac{p+3q}{p-q} + \frac{4p+q}{2p-q} \\ &= \frac{-(p+3q) \ (2p-q) + (p-q) \ (4p+q)}{(p-q) \ (2p-q)} \\ &= \frac{-2p^2 - 5pq + 3q^2 + 4p^2 - 3pq - q^2}{(p-q) \ (2p-q)} \\ &= \frac{2p^2 - 8pq + 2q^2}{(p-q) \ (2p-q)} = \frac{2(p^2 - 4pq + q^2)}{(p-q)(2p-q)} \end{split}$$

Example 8: Using theorem of componendo-dividendo, solve the equation

$$\frac{\sqrt{x+3} + \sqrt{x-3}}{\sqrt{x+3} - \sqrt{x-3}} = \frac{4}{3}.$$

Solution: Given equation is 
$$\frac{\sqrt{x+3} + \sqrt{x-3}}{\sqrt{x+3} - \sqrt{x-3}} = \frac{4}{3}$$

By componendo-dividendo theorem

$$\frac{\sqrt{x+3} + \sqrt{x-3} + \sqrt{x+3} - \sqrt{x-3}}{\sqrt{x+3} + \sqrt{x-3} - \sqrt{x+3} + \sqrt{x-3}} = \frac{4+3}{4-3}$$

$$\frac{2\sqrt{x+3}}{2\sqrt{x-3}} = \frac{7}{1} \implies \sqrt{\frac{x+3}{x-3}} = 7$$

Squaring both sides

$$\frac{x+3}{x-3} = 49$$

$$x + 3 = 49(x - 3)$$
  $\Rightarrow x + 3 = 49x - 147$   $\Rightarrow x - 49x = -147 - 3$ 

$$-48x = -150$$
  $\Rightarrow 48x = 150$   $\Rightarrow x = \frac{150}{48} = \frac{25}{8}$ 

Example 9: Using componendo-dividendo theorem, solve the equation  $\frac{(x+3)^2 - (x-5)^2}{(x+3)^2 + (x-5)^2} = \frac{4}{5}$ .

Solution: Given equation is  $\frac{(x+3)^2 - (x-5)^2}{(x+3)^2 + (x-5)^2} = \frac{4}{5}$ 

By componendo-dividendo theorem

$$\frac{(x+3)^2 - (x-5)^2 + (x+3)^2 + (x-5)^2}{(x+3)^2 - (x-5)^2 - (x+3)^2 - (x-5)^2} = \frac{4+5}{4-5}$$

$$\frac{2(x+3)^2}{-2(x-5)^2} = \frac{9}{-1} \implies \left(\frac{x+3}{x-5}\right)^2 = (3)^2$$

Taking square root  $\frac{x+3}{x-5} = \pm 3$ 

$$\frac{x+3}{x-5} = 3$$

or 
$$\frac{x+3}{x-5} = -3$$

$$x + 3 = 3(x - 5)$$

$$x + 3 = -3(x - 5)$$

$$x + 3 = 3x - 15$$

$$x + 3 = -3x + 15$$

$$-2x = -18$$
$$x = 9$$

$$4x = 12$$
$$x = 3$$

The solution set is 
$$\{3, 9\}$$

## EXERCISE 3.4

- 1. Prove that a:b=c:d, if
  - $\frac{4a + 5b}{4a 5b} = \frac{4c + 5d}{4c 5d}$ (i)

(ii) 
$$\frac{2a+9b}{2a-9b} = \frac{2c+9d}{2c-9d}$$

(iii) 
$$\frac{ac^2 + bd^2}{ac^2 - bd^2} = \frac{c^3 + d^3}{c^3 - d^3}$$

(iv) 
$$\frac{a^2c + b^2d}{a^2c - b^2d} = \frac{ac^2 + bd^2}{ac^2 - bd^2}$$

(v) 
$$pa + qb : pa - qb = pc + qd : pc - qd$$

(vi) 
$$\frac{a+b+c+d}{a+b-c-d} = \frac{a-b+c-d}{a-b-c+d}$$

(vii) 
$$\frac{2a+3b+2c+3d}{2a+3b-2c-3d} = \frac{2a-3b+2c-3d}{2a-3b-2c+3d}$$

(viii) 
$$\frac{a^2 + b^2}{a^2 - b^2} = \frac{ac + bd}{ac - bd}$$

2. Using theorem of componendo-dividendo

(i) Find the value of 
$$\frac{x+2y}{x-2y} + \frac{x+2z}{x-2z}$$
, if  $x = \frac{4yz}{y+z}$ 

(ii) Find the value of 
$$\frac{m+5n}{m-5n} + \frac{m+5p}{m-5p}$$
, if  $m = \frac{10np}{n+p}$ 

(iii) Find the value of 
$$\frac{x-6a}{x+6a} - \frac{x+6b}{x-6b}$$
, if  $x = \frac{12ab}{a-b}$ 

(iv) Find the value of 
$$\frac{x-3y}{x+3y} - \frac{x+3z}{x-3z}$$
, if  $x = \frac{3yz}{y-z}$ 

(v) Find the value of 
$$\frac{s-3p}{s+3p} + \frac{s+3q}{s-3q}$$
, if  $s = \frac{6pq}{p-q}$ 

(vi) Solve 
$$\frac{(x-2)^2 - (x-4)^2}{(x-2)^2 + (x-4)^2} = \frac{12}{13}$$

(vii) Solve 
$$\frac{\sqrt{x^2 + 2} + \sqrt{x^2 - 2}}{\sqrt{x^2 + 2} - \sqrt{x^2 - 2}} = 2$$

(viii) Solve 
$$\frac{\sqrt{x^2 + 8p^2} - \sqrt{x^2 - p^2}}{\sqrt{x^2 + 8p^2} + \sqrt{x^2 - p^2}} = \frac{1}{3}$$

(ix) Solve 
$$\frac{(x+5)^3 - (x-3)^3}{(x+5)^3 + (x-3)^3} = \frac{13}{14}$$

#### 3.3.(i) Joint variation

A combination of direct and inverse variations of one or more than one variables forms **joint variation**.

If a variable y varies directly as x and varies inversely as z.

Then 
$$y \propto x$$
 and  $y \propto \frac{1}{z}$ 

In joint variation, we write it as

$$y \propto \frac{x}{z}$$

i.e., 
$$y = k \frac{x}{7}$$

Where  $k \neq 0$  is the constant of variation.

For example, by Newton's law of gravitation, if one body attracts another with a force (G), that varies directly as the product of their masses  $(m_1)$ ,  $(m_2)$  and inversely as the square of the distance (d) between them.

i.e., 
$$G \propto \frac{m_1 m_2}{d^2}$$
 or  $G = k \frac{m_1 m_2}{d^2}$ , where  $k \neq 0$  is the constant

3.3.(ii) Problems related to joint variation.

Procedure to solve the problems related to joint variation is explained through examples.

**Example 1:** If y varies jointly as  $x^2$  and z and y = 6 when x = 4, z = 9. Write y as a function of x and z and determine the value of y, when x = -8 and z = 12.

Solution: Since y varies jointly as  $x^2$  and z, therefore

$$y \propto x^{2}z$$
i.e., 
$$y = kx^{2}z$$
 (i)
Put 
$$y = 6, x = 4, z = 9$$

$$6 = k (4)^{2} (9)$$

$$\frac{6}{16 \times 9} = k \implies k = \frac{1}{24}$$

Put 
$$k = \frac{1}{24}$$
 in eq.(i),  $y = \frac{1}{24}x^2z$ 

Now put x = -8, z = 12 in the above equation,

$$y = \frac{1}{24} (-8)^2 (12) = 32$$

**Example 2:** p varies jointly as q and  $r^2$  and inversely as s and  $t^2$ , p = 40, when q = 8, r = 5, s = 3, t = 2. Find p in terms of q, r, s and t. Also find the value of p when q = -2, r = 4, s = 3 and t = -1.

Solution: Given that  $p \propto \frac{qr^2}{st^2}$ 

$$p = k \frac{qr^2}{st^2}$$
 (i)

Put p = 40, q = 8, r = 5, s = 3 and t = 2

$$40 = k \frac{(8)(5)^2}{3(2)^2}$$

$$\frac{40 \times 3 \times 4}{8 \times 25} = k$$

$$k = \frac{12}{5}$$

Then eq. (i) becomes

$$p = \frac{12}{5} \frac{qr^2}{st^2}$$

Now for q = -2, r = 4, s = 3 and t = -1, we have

$$p = \frac{12}{5} \frac{(-2)(4)^2}{(3)(-1)^2} = -\frac{128}{5}$$

# EXERCISE 3.5

- 1. If s varies directly as  $u^2$  and inversely as v and s = 7 when u = 3, v = 2. Find the value of s when u = 6 and v = 10.
- 2. If w varies jointly as x,  $y^2$  and z and w = 5 when x = 2, y = 3, z = 10. Find w when x = 4, y = 7 and z = 3.
- 3. If y varies directly as  $x^3$  and inversely as  $z^2$  and t, and y = 16 when x = 4, z = 2, t = 3. Find the value of y when x = 2, z = 3 and t = 4.
- 4. If u varies directly as  $x^2$  and inversely as the product  $yz^3$ , and u = 2 when x = 8, y = 7, z = 2. Find the value of u when x = 6, y = 3, z = 2.
- 5. If v varies directly as the product  $xy^3$  and inversely as  $z^2$  and v = 27 when x = 7, y = 6, z = 7. Find the value of v when x = 6, y = 2, z = 3.
- 6. If w varies inversely as the cube of u, and w = 5 when u = 3. Find w when u = 6.

#### 3.4. K-Method

3.4(i) Use k-method to prove conditional equalities involving proportions.

If a:b::c:d is a proportion, then putting each ratio equal to k

i.e., 
$$\frac{a}{b} = \frac{c}{d} = k$$
$$\frac{a}{b} = k \text{ and } \frac{c}{d} = k$$
$$a = bk \text{ and } c = dk$$

Using the above equations, we can solve certain problems relating to proportions more easily. This method is known as k-method. We illustrate the k-method through the following examples.

**Example 1:** If a:b=c:d, then show that

$$\frac{3a + 2b}{3a - 2b} = \frac{3c + 2d}{3c - 2d}$$

**Solution:** a:b=c:d

Let 
$$\frac{a}{b} = \frac{c}{d} = k$$

Then a = bk and c = dk

To prove 
$$\frac{3a+2b}{3a-2b} = \frac{3c+2d}{3c-2d}$$

Now L.H.S = 
$$\frac{3a + 2b}{3a - 2b} = \frac{3kb + 2b}{3kb - 2b} = \frac{b(3k + 2)}{b(3k - 2)}$$
  
=  $\frac{3k + 2}{3k - 2}$  (i)

Also R.H.S = 
$$\frac{3c + 2d}{3c - 2d} = \frac{3kd + 2d}{3kd - 2d} = \frac{d(3k + 2)}{d(3k - 2)}$$
  
=  $\frac{3k + 2}{3k - 2}$  (ii)

$$\therefore$$
 L.H.S = R.H.S

*i.e.*, 
$$\frac{3a+2b}{3a-2b} = \frac{3c+2d}{3c-2d}$$

Example 2: If a:b=c:d, then show that

$$pa + qb : ma - nb = pc + qd : mc - nd$$

Solution: Let 
$$\frac{a}{b} = \frac{c}{d} = k$$
, then  $a = bk$  and  $c = dk$ 

L.H.S = 
$$pa + qb$$
 :  $ma - nb = \frac{pa + qb}{ma - nb} = \frac{pkb + qb}{mkb - nb}$ 
$$= \frac{b(pk + q)}{b(mk - n)} = \frac{pk + q}{mk - n}$$

R.H.S = 
$$pc + qd$$
:  $mc - nd = \frac{pc + qd}{mc - nd} = \frac{pkd + qd}{mkd - nd}$   $(c = kd)$ 

$$= \frac{d(pk + q)}{d(mk - n)} = \frac{pk + q}{mk - n}$$

i.e., 
$$pa + qb : ma - nb = pc + qd : mc - nd$$

Example 3: If 
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
, then show that  $\frac{a^3 + c^3 + e^3}{b^3 + d^3 + f^3} = \frac{ace}{bdf}$ 

Solution: Let 
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$$

Then 
$$\frac{a}{b} = k$$
,  $\frac{c}{d} = k$  and  $\frac{e}{f} = k$ 

i.e., 
$$a = bk$$
,  $c = dk$  and  $e = fk$ 

To prove 
$$\frac{a^3 + c^3 + e^3}{b^3 + d^3 + f^3} = \frac{ace}{bdf}$$

Now L.H.S = 
$$\frac{a^3 + c^3 + e^3}{a^3 + d^3 + f^3} = \frac{(bk)^3 + (dk)^3 + (fk)^3}{b^3 + d^3 + f^3}$$
  
=  $\frac{b^3k^3 + d^3k^3 + f^3k^3}{b^3 + d^3 + f^3} = k^3 \left(\frac{b^3 + d^3 + f^3}{b^3 + d^3 + f^3}\right) = k^3$ 

Also R.H.S = 
$$\frac{ace}{bdf}$$
 =  $\frac{(bk) (dk) (fk)}{bdf}$  =  $k^3 \frac{bdf}{bdf}$  =  $k^3$ 

*i.e.*, 
$$\frac{a^3 + c^3 + e^3}{b^3 + d^3 + f^3} = \frac{ace}{bdf}$$

Example 4: If 
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
, then show that  $\frac{a^2b + c^2d + e^2f}{ab^2 + cd^2 + ef^2} = \frac{a + c + e}{b + d + f}$ 

Solution: Let 
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$$

$$a = bk$$
,  $c = dk$ ,  $e = fk$ 

To prove 
$$\frac{a^2b + c^2d + e^2f}{ab^2 + cd^2 + ef^2} = \frac{a + c + e}{b + d + f}$$

L.H.S. = 
$$\frac{a^2b + c^2d + e^2f}{ab^2 + cd^2 + ef^2}$$

$$= \frac{(bk)^2b + (dk)^2d + (fk)^2f}{(bk)b^2 + (dk)d^2 + (fk)f^2} = \frac{k^2b^3 + k^2d^3 + k^2f^3}{kb^3 + kd^3 + kf^3}$$

$$= \frac{k^2 (b^3 + d^3 + f^3)}{k (b^3 + d^3 + f^3)} = k$$

R.H.S. = 
$$\frac{a+c+e}{b+d+f} = \frac{bk+dk+fk}{b+d+f}$$

$$=\frac{k(b+d+f)}{b+d+f}=k$$

$$L.H.S. = R.H.S.$$

Thus, 
$$\frac{a^2b + c^2d + e^2f}{ab^2 + cd^2 + ef^2} = \frac{a + c + e}{b + d + f}$$

## EXERCISE 3.6

1. If a:b=c:d,  $(a,b,c,d\neq 0)$ , then show that

(i) 
$$\frac{4a - 9b}{4a + 9b} = \frac{4c - 9d}{4c + 9d}$$

(ii) 
$$\frac{6a - 5b}{6a + 5b} = \frac{6c - 5d}{6c + 5d}$$

(iii) 
$$\frac{a}{b} = \sqrt{\frac{a^2 + c^2}{b^2 + d^2}}$$

(iv) 
$$a^6 + c^6 : b^6 + d^6 = a^3c^3 : b^3d^3$$

(v) 
$$p(a+b) + qb : p(c+d) + qd = a : c$$

(vi) 
$$a^2 + b^2 : \frac{a^3}{a+b} = c^2 + d^2 : \frac{c^3}{c+d}$$

(vii) 
$$\frac{a}{a-b}$$
:  $\frac{a+b}{b} = \frac{c}{c-d}$ :  $\frac{c+d}{d}$ 

2. If  $\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$  (a, b, c, d, e, f \neq 0), then show that

(i) 
$$\frac{a}{b} = \sqrt{\frac{a^2 + c^2 + e^2}{b^2 + d^2 + f^2}}$$
 (ii) 
$$\frac{ac + ce + ea}{bd + df + fb} = \left[\frac{ace}{bdf}\right]^{2/3}$$

(iii) 
$$\frac{ac}{bd} + \frac{ce}{df} + \frac{ea}{fb} = \frac{a^2}{b^2} + \frac{c^2}{d^2} + \frac{e^2}{f^2}$$

3.4(ii) Real life problems based on variation

**Example 1:** The strength "s" of a rectangular beam varies directly as the breadth b and the square of the depth d. If a beam 9cm wide and 12cm deep will support 1200 lb. What weight a beam of 12cm wide and 9cm deep will support?

Solution: By the joint variation, we have  $s \propto bd^2$ 

i.e., 
$$s = kbd^2$$
 (i)

Put s = 1200, b = 9 and d = 12

$$k(9) (12)^2 = 1200$$

$$k = \frac{1200}{9 \times 144} = \frac{25}{27}$$

Put in eq. (i)  $s = \frac{25}{27}bd^2$ 

Now for b = 12 and d = 9

$$s = \frac{25}{27} (12) (9)^2 = \frac{25(12) (9) (9)}{27} = 900 \text{ lb}$$

**Example 2:** The current in a wire varies directly as the electromotive force E and inversely as the resistance R. If I = 32 amperes, when E = 128 volts and R = 8 ohms. Find I, when E = 150 volts and R = 18 ohms.

Solution: In joint variation, we have  $I \propto \frac{E}{R}$ , i.e.,  $I = \frac{kE}{R}$  (i)

For I = 32, E = 128 and R = 8,

$$32 = \frac{k(128)}{8} \implies \frac{32 \times 8}{128} = k \implies k = 2$$

Put in eq. (i)  $I = \frac{2E}{R}$ .

Now for E = 150 and R = 18

$$I = \frac{2(150)}{18} = \frac{50}{3}$$
 amp.



- 1. The surface area A of a cube varies directly as the square of the length l of an edge and A = 27 square units when l = 3 units.
  - Find (i) A when l = 4 units (ii) l when A = 12 sq. units.
- 2. The surface area S of the sphere varies directly as the square of radius r, and  $S = 16\pi$  when r = 2. Find r when  $S = 36\pi$ .
- 3. In Hook's law the force F applied to stretch a spring varies directly as the amount of elongation S and F = 32lb when S = 1.6 in. Find (i) S when F = 50 lb (ii) F when S = 0.8in.
- 4. The intensity *I* of light from a given source varies inversely as the square of the distance *d* from it. If the intensity is 20 candlepower at a distance of 12ft. from the source, find the intensity at a point 8ft. from the source.
- 5. The pressure *P* in a body of fluid varies directly as the depth *d*. If the pressure exerted on the bottom of a tank by a column of fluid 5ft. high is 2.25 lb/sq. in, how deep must the fluid be to exert a pressure of 9 lb/sq. in?
- 6. Labour costs c varies jointly as the number of workers n and the average number of days d. If the cost of 800 workers for 13 days is Rs. 286000, then find the labour cost of 600 workers for 18 days.
- 7. The supporting load c of a pillar varies as the fourth power of its diameter d and inversely as the square of its length l. A pillar of diameter 6 inch and of height 30 feet will support a load of 63 tons. How high a 4 inch pillar must be to support a load of 28 tons?
- 8. The time *T* required for an elevator to lift a weight varies jointly as the weight *w* and the lifting depth *d* varies inversely as the power *p* of the motor. If 25 sec. are required for a 4-hp motor to lift 500 lb through 40 ft, what power is required to lift 800 lb, through 120 ft in 40 sec.?
- 9. The kinetic energy (K.E.) of a body varies jointly as the mass "m" of the body and the square of its velocity "v". If the kinetic energy is 4320 ft/lb when the mass is 45 lb and the velocity is 24 ft/sec, determine the kinetic energy of a 3000 lb automobile travelling 44 ft/sec.

#### **MISCELLANEOUS EXERCISE - 3**

1. Multiple Choice Questions

Four possible answers are given for the following questions. Tick  $(\checkmark)$  the correct answer.

- (i) In a ratio a:b, a is called
  - (a) relation

(b) antecedent

(c) consequent

(d) None of these

| (ii)   | In a r                                                                                                  | atio $x : y$ , $y$ is called |     |                                    |
|--------|---------------------------------------------------------------------------------------------------------|------------------------------|-----|------------------------------------|
|        | (a)                                                                                                     | relation                     | (b) | antecedent                         |
|        | (c)                                                                                                     | consequent                   | (d) | None of these                      |
| (iii)  | In a proportion $a:b::c:d$ , $a$ and $d$ are called,                                                    |                              |     |                                    |
|        | (a)                                                                                                     | means                        | (b) | extremes                           |
|        | (c)                                                                                                     | third proportional           | (d) | None of these                      |
| (iv)   | In a proportion $a:b::c:d$ , $b$ and $c$ are called                                                     |                              |     |                                    |
|        | (a)                                                                                                     | means                        | (b) | extremes                           |
|        | (c)                                                                                                     | fourth proportional          | (d) | None of these                      |
| (v)    | In continued proportion $a: b = b: c$ , $ac = b^2$ , $b$ is said to be proportion between $a$ and $c$ . |                              |     |                                    |
|        | (a)                                                                                                     | third                        | (b) | fourth                             |
|        | (c)                                                                                                     | means                        | (d) | None of these                      |
| (vi)   | In continued proportion $a:b=b:c$ , $c$ is said to be proportional to $a$ and $b$ .                     |                              |     |                                    |
|        | (a)                                                                                                     | third                        | (b) | fourth                             |
|        | (c)                                                                                                     | means                        | (d) | None of these                      |
| (vii)  | Find $x$ in proportion $4:x::5:15$                                                                      |                              |     |                                    |
|        | (a)                                                                                                     | ·                            | (b) | $\frac{4}{3}$                      |
|        | (c)                                                                                                     | $\frac{3}{4}$                | (d) | 12                                 |
| (viii) |                                                                                                         | $\propto v^2$ , then         |     |                                    |
|        |                                                                                                         | $u = v^2$                    | (b) | $u = kv^2$                         |
|        | . ,                                                                                                     | $uv^2 = k$                   | (d) | $uv^2 = 1$                         |
| (ix)   | If $y^2 \propto \frac{1}{x^3}$ , then                                                                   |                              |     |                                    |
|        |                                                                                                         | $y^2 = \frac{k}{x^3}$        | (b) | $y^2 = \frac{1}{x^3}$ $y^2 = kx^3$ |
|        | (c)                                                                                                     | $y^2 = x^2$                  | (d) | $y^2 = kx^3$                       |
| (x)    | If $\frac{u}{v} = \frac{v}{w} = k$ , then                                                               |                              |     |                                    |
|        |                                                                                                         | $u = wk^2$                   |     | $u = vk^2$                         |
|        | (c)                                                                                                     | $u = w^2 k$                  | (d) | $u = v^2 k$                        |
| (xi)   |                                                                                                         |                              |     |                                    |
|        | (a)                                                                                                     | $\frac{y^2}{x^2}$            | (b) | $x^2y^2$                           |
|        | (c)                                                                                                     | $\frac{y^4}{x^2}$            | (d) | $\frac{y^2}{x^4}$                  |

- (xii) The fourth proportional w of x : y : v : w is
  - (a)  $\frac{xy}{v}$

(b)  $\frac{vy}{x}$ 

(c) xyv

- (d)  $\frac{x}{vy}$
- (xiii) If a:b=x:y, then alternando property is
  - (a)  $\frac{a}{x} = \frac{b}{y}$

(b)  $\frac{a}{b} = \frac{x}{y}$ 

(c)  $\frac{a+b}{b} = \frac{x+y}{y}$ 

- (d)  $\frac{a-b}{x} = \frac{x-y}{y}$
- (xiv) If a:b=x:y, then invertendo property is
  - (a)  $\frac{a}{x} = \frac{b}{y}$

(b)  $\frac{a}{a-b} = \frac{x}{x-y}$ 

(c)  $\frac{a+b}{b} = \frac{x+y}{y}$ 

- (d)  $\frac{b}{a} = \frac{y}{x}$
- (xv) If  $\frac{a}{b} = \frac{c}{d}$ , then componendo property is
  - (a)  $\frac{a}{a+b} = \frac{c}{c+d}$

(b)  $\frac{a}{a-b} = \frac{c}{c-d}$ 

(c)  $\frac{aa}{ba}$ 

(d)  $\frac{a-b}{b} = \frac{c-d}{d}$ 

#### 2. Write short answers of the following questions.

- (i) Define ratio and give one example.
- (ii) Define proportion.
- (iii) Define direct variation.
- (iv) Define inverse variation.
- (v) State theorem of componendo-dividendo.
- (vi) Find x, if 6:x::3:5.
- (vii) If x and  $y^2$  varies directly, and x = 27 when y = 4. Find the value of y when x = 3.
- (viii) If u and v varies inversely, and u = 8, when v = 3. Find v when u = 12.
- (ix) Find the fourth proportional to 8, 7, 6.
- (x) Find a mean proportional to 16 and 49.
- (xi) Find a third proportional to 28 and 4.
- (xii) If  $y \propto \frac{x^2}{z}$  and y = 28 when x = 7, z = 2, then find y.
- (xiii) If  $z \propto xy$  and z = 36 when x = 2, y = 3, then find z.
- (xiv) If  $w \propto \frac{1}{v^2}$  and w = 2 when v = 3, then find w.

3. Fill in the blanks

(i) The simplest form of the ratio  $\frac{(x+y)(x^2+xy+y^2)}{x^3-y^3}$  is \_\_\_\_\_.

(ii) In a ratio x : y; x is called

(iii) In a ratio a:b; b is called \_\_\_\_\_.

(iv) In a proportion a : b :: x : y; a and y are called \_\_\_\_\_.

(v) In a proportion p:q::m:n;q and m are called \_\_\_\_\_.

(vi) In proportion  $7:4::p:8, p = _____.$ 

(vii) If 6:m:9:12, then m =\_\_\_\_\_.

(viii) If x and y varies directly, then  $x = \underline{\hspace{1cm}}$ .

(ix) If v varies directly as  $u^3$ , then  $u^3 = \underline{\hspace{1cm}}$ .

(x) If w varies inversely as  $p^2$ , then  $k = \underline{\hspace{1cm}}$ .

(xi) A third proportional of 12 and 4, is \_\_\_\_\_.

(xii) The fourth proportional of 15, 6, 5 is \_\_\_\_\_.

(xiii) The mean proportional of  $4m^2n^4$  and  $p^6$  is .

(xiv) The continued proportion of 4, m and 9 is \_\_\_\_\_.



A relation between two quantities of the same kind is called **ratio**.

A proportion is a statement, which is expressed as equivalence of two ratios.

If two ratios a:b and c:d are equal, then we can write a:b=c:d

If two quantities are related in such a way that increase (decrease) in one quantity causes increase (decrease) in the other quantity is called **direct variation**.

If two quantities are related in such a way that when one quantity increases, the other decreases is called **inverse variation**.

> Theorem on proportions:

(1) Theorem of Invertendo

If a : b = c : d, then b : a = d : c

(2) Theorem of Alternando

If a : b = c : d, then a : c = b : d

(3) Theorem of Componendo

If a:b=c:d, then

(*i*) a + b : b = c + d : d

and (ii) a: a + b = c: c + d

**Theorem of Dividendo** (4)

If 
$$a:b=c:d$$
, then

(i) 
$$a - b : b = c - d : d$$

$$(ii) \qquad a:a-b=c:c-d$$

(5) Theorem of Componendo-dividendo

If 
$$a:b=c:d$$
, then

$$a + b : a - b = c + d : c - d$$

A combination of direct and inverse variations of one or more than one variable forms joint variation.

K-Method,

(a) If 
$$\frac{a}{b} = \frac{c}{d}$$
,

then 
$$\frac{a}{b} = \frac{c}{d} = k$$

then 
$$\frac{a}{b} = \frac{c}{d} = k$$
 or  $a = bk$  and  $c = dk$ 

(b) If 
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$$
, then  $a = bk$ ,  $c = dk$  and  $e = fk$ 

$$a = bk$$
,  $c = dk$  and  $e = fk$