Unit-9

## **CHORDS OF A CIRCLE**

## In this unit, students will learn how to

Prove the following theorems alongwith corollaries and apply them to solve appropriate problems.

- 2 One and only one circle can pass through three non collinear points.
- A straight line, drawn from the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.
- ≥ Perpendicular from the centre of a circle on a chord bisects it.
- A If two chords of a circle are congruent then they will be equidistant from the centre.
- > Two chords of a circle which are equidistant from the centre are congruent.

### Basic concepts of the circle

A **circle** is the locus of a moving point P in a plane which is always equidistant from some fixed point O. The fixed point O not lying on the circle is called the centre, the constant distance OP is its radius whereas the boundary traced by moving point P is called circumference of the circle.

Note that the **radial segment** of a circle is a line segment, determined by the centre and a point on the circle. There is only one centre point whereas all the radii of a circle are equal in length.

In the adjoining figure (i) of the circle, the

length of radial segment =  $m\overline{OP} = m\overline{OQ} = m\overline{OT}$ 

 $2\pi r$  is the **circumference** of a circle with radius r whereas an irrational number  $\pi$  being the ratio of the circumference and the diameter of a given circle.

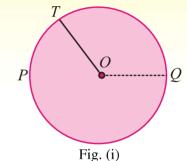
An **arc** *ACB* of a circle is any portion of its circumference.

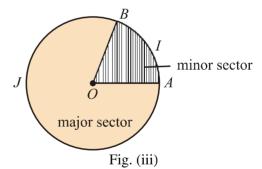
A **chord** AKB of a circle is a line segment joining any two points A and B on the circumference of a circle. Whereas diameter POQ is the chord passing through the centre of a circle. Evidently diameter bisects a circle.

A **segment** is the portion of a circle bounded by an arc and a corresponding chord. Evidently any chord divides a circle into two segments.

In figure (ii) the bigger area shown by slanting line segments is the major segment whereas the smaller area shown by shading is the minor segment.

A **sector** of a circle is the plane figure bounded by two radii and the arc intercepted between them. Any pair of radii divides a circle into two sectors.





In the figure (iii) OAIB is the minor sector, whereas OAJB is the major sector of the circle.

 $\angle AOB$  is the central angle of a circle whose vertex is at the centre O and its arms meet at the end points of the arc AB.



9.1(i) One and only one circle can pass through three non-collinear points.

Given: A, B and C are three non collinear points in a plane.

To prove: One and only one circle can pass through three non-collinear points A, B and C.

Construction: Join A with B and B with C.

Draw  $\overline{DF} \perp$  bisector to  $\overline{AB}$  and  $\overline{HK} \perp$  bisector to  $\overline{BC}$ .

So,  $\overline{DF}$  and  $\overline{HK}$  are not parallel and they intersect each other at point O. Also join A, B and C with point O.



#### **Proof:**

| Statements                                                                              | Reasons                                                            |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Every point on $\overline{DF}$ is equidistant from $A$ and $B$ .                        | $\overline{DF}$ $\perp$ bisector to $\overline{AB}$ (construction) |
| In particular $m\overline{OA} = m\overline{OB}$ (i)                                     |                                                                    |
| Similarly every point on $\overline{HK}$ is equidistant from                            | $\overline{HK}$ is $\perp$ bisector to $\overline{BC}$             |
| B and $C$ .                                                                             | (construction)                                                     |
| In particular $m\overline{OB} = m\overline{OC}$ (ii)                                    |                                                                    |
| Now $O$ is the only point common to $\overline{DF}$ and $\overline{HK}$ which           |                                                                    |
| is equidistant from A, B and C.                                                         |                                                                    |
| i.e., $m\overline{OA} = m\overline{OB} = m\overline{OC}$                                | Using (i) and (ii)                                                 |
| However there is no such other point expect $O$ .                                       |                                                                    |
| Hence a circle with centre O and radius OA wil                                          |                                                                    |
| Ultimately there is only one circle which passes through three given points A, B and C. |                                                                    |

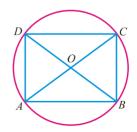
Example: Show that only one circle can be drawn

to pass through the vertices of any rectangle.

**Given:** ABCD is a rectangle.

**To Prove:** Only one circle can be drawn through the vertices of the rectangle *ABCD*.

**Construction:** Diagonals  $\overline{AC}$  and  $\overline{BD}$  of the rectangle meet each other at point O.



#### **Proof:**

| Statements                                                                                                |       | Reasons                                  |
|-----------------------------------------------------------------------------------------------------------|-------|------------------------------------------|
| ABCD is a rectangle.                                                                                      |       | Given                                    |
| $\therefore m\overline{AC} = m\overline{BD}$                                                              | (i)   | Diagonals of a rectangle are equal.      |
| $\therefore \overline{AC}$ and $\overline{BD}$ meet each other at $O$                                     |       | Construction                             |
| $\therefore m\overline{OA} = m\overline{OC} \text{ and } m\overline{OB} = m\overline{OD}$                 | (ii)  | Diagonals of rectangle bisect each other |
| $\Rightarrow m\overline{OA} = m\overline{OB} = m\overline{OC} = m\overline{OD}$                           | (iii) | Using (i) and (ii)                       |
| i.e., point O is equidistant from all vertices of the                                                     |       |                                          |
| rectangle ABCD.                                                                                           |       |                                          |
| Hence $\overline{OA}$ , $\overline{OB}$ , $\overline{OC}$ and $\overline{OD}$ are the radii of the circle |       |                                          |
| which is passing through the vertices of the rectangle                                                    |       |                                          |
| having centre O.                                                                                          |       |                                          |

# THEOREM 2

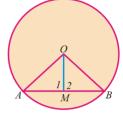
# 9.1(ii) A straight line, drawn from the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.

Given: M is the mid point of any chord  $\overline{AB}$  of a circle with centre at O.

Where chord  $\overline{AB}$  is not the diameter of the circle.

**To prove:**  $\overline{OM} \perp$  the chord  $\overline{AB}$ .

Construction: Join A and B with centre O. Write  $\angle 1$  and  $\angle 2$  as shown in the figure. **Proof:** 



| <u>Statements</u>                                                    |      | Reasons                                                  |
|----------------------------------------------------------------------|------|----------------------------------------------------------|
| In $\triangle OAM \leftrightarrow \triangle OBM$                     |      |                                                          |
| $m\overline{OA} = m\overline{OB}$                                    |      | Radii of the same circle                                 |
| $m\overline{AM}=m\overline{BM}$                                      |      | Given                                                    |
| $m\overline{OM} = m\overline{OM}$                                    |      | Common                                                   |
| $\therefore \qquad \Delta OAM \cong \Delta OBM$                      |      | S.S.S \( \subseteq \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| $\Rightarrow m \angle 1 = m \angle 2$                                | (i)  | Corresponding angles of                                  |
|                                                                      |      | congruent triangles                                      |
| <i>i.e.</i> , $m \angle 1 + m \angle 2 = m \angle AMB = 180^{\circ}$ | (ii) | Adjacent supplementary angles                            |
| $\therefore m \angle 1 = m \angle 2 = 90^{\circ}$                    |      | From (i) and (ii)                                        |

i.e.,  $\overline{OM} \perp \overline{AB}$ 



### 9.1(iii) Perpendicular from the centre of a circle on a chord bisects it.

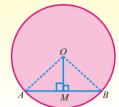
Given:  $\overline{AB}$  is the chord of a circle with centre at O

so that  $\overline{OM} \perp \text{chord } \overline{AB}$ .

**To prove:** M is the mid point of chord  $\overline{AB}$ 

i.e.,  $m\overline{AM} = m\overline{BM}$ 

**Construction:** Join *A* and *B* with centre *O*.



#### **Proof:**

| Statements                                                      | Reasons                                              |
|-----------------------------------------------------------------|------------------------------------------------------|
| In $\angle rt \Delta^s OAM \leftrightarrow OBM$                 | Reasons                                              |
| $m\angle OMA = m\angle OMB = 90^{\circ}$                        | Given                                                |
| hyp. $m\overline{OA}$ = hyp. $m\overline{OB}$ .                 | Radii of the same circle                             |
| $m\overline{OM} = m\overline{OM}$                               | Common                                               |
| $\therefore \qquad \Delta OAM \cong \Delta OBM$                 | In $\angle rt \Delta^s$ H.S $\stackrel{\sim}{=}$ H.S |
| Hence, $m\overline{AM} = m\overline{BM}$                        | Corresponding sides of congruent triangles           |
| $\Rightarrow \overline{OM}$ bisects the chord $\overline{AB}$ . |                                                      |

Corollary 1:  $\perp$  bisector of the chord of a circle passes through the centre of a circle.

**Corollary 2:** The diameter of a circle passes through the mid points of two parallel chords of a circle.

**Example:** Parallel lines passing through the points of intersection of two circles and intercepted by them are equal.

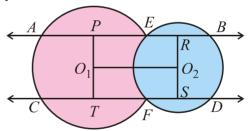
**Given:** Two circles have centres  $O_1$  and  $O_2$ . They intersect each other at points E and F.

Line segment  $\overline{AB} \parallel$  Line segment  $\overline{CD}$ 

**To Prove:**  $m\overline{AB} = m\overline{CD}$ 

**Construction:** Draw  $\overline{PT}$  and  $\overline{RS} \perp \text{both } \overline{AB}$  and

 $\overline{CD}$  and join the centres  $O_1$  and  $O_2$ .



### **Proof:**

| Statements                                                          | Reasons      |
|---------------------------------------------------------------------|--------------|
| PRST is a rectangle                                                 | Construction |
| $\therefore \qquad m \; \overline{PR} = m \; \overline{TS} \tag{i}$ |              |
| Now $m \overline{PR} = m \overline{PE} + m \overline{ER}$           |              |
| $= \frac{1}{2} m  \overline{AE} + \frac{1}{2} m  \overline{EB}$     | By Theorem 3 |

$$=\frac{1}{2}\left(m\;\overline{AE}+m\;\overline{EB}\right)$$

$$m \; \overline{PR} = \frac{1}{2} \; (m \; \overline{AB})$$

(ii)

$$m\overline{AE} + m\overline{EB} = m\overline{AB}$$

Similarly 
$$m \overline{TS} = \frac{1}{2} m \overline{CD}$$

(iii)

$$\Rightarrow \frac{1}{2} m \overline{AB} = \frac{1}{2} m \overline{CD}$$

Using (i), (ii) and (iii)

i.e., 
$$m\overline{AB} = m\overline{CD}$$



- 1. Prove that, the diameters of a circle bisect each other.
- 2. Two chords of a circle do not pass through the centre. Prove that they cannot bisect each other.
- 3. If length of the chord  $\overline{AB} = 8$ cm. Its distance from the centre is 3 cm, then find the diameter of such circle.
- 4. Calculate the length of a chord which stands at a distance 5cm from the centre of a circle whose radius is 9cm.



9.1(*iv*) If two chords of a circle are congruent then they will be equidistant from the centre.

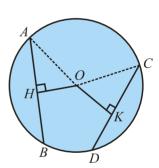
Given:  $\overline{AB}$  and  $\overline{CD}$  are two equal chords of a circle with centre at O.

So that  $\overline{OH} \perp \overline{AB}$  and  $\overline{OK} \perp \overline{CD}$ .

**To prove:**  $m\overline{OH} = m\overline{OK}$ 

**Construction:** Join *O* with *A* and *O* with *C*.

So that we have  $\angle rt\Delta^s OAH$  and OCK.



#### **Proof:**

| Statements                                              | Reasons                                          |
|---------------------------------------------------------|--------------------------------------------------|
| $\overline{OH}$ bisects chord $\overline{AB}$           | $\overline{OH} \perp \overline{AB}$ By Theorem 3 |
| i.e., $m\overline{AH} = \frac{1}{2}m\overline{AB}$ (i)  |                                                  |
| Similarly $\overline{OK}$ bisects chord $\overline{CD}$ | $\overline{OK} \perp \overline{CD}$ By Theorem 3 |
| i.e., $m\overline{CK} = \frac{1}{2}m\overline{CD}$ (ii) |                                                  |
|                                                         |                                                  |

But 
$$m\overline{AB} = m\overline{CD}$$

(iii) G

Given

Hence 
$$m\overline{AH} = m\overline{CK}$$

Now in  $\angle rt \Delta^s OAH \leftrightarrow OCK$ 

 $A \geq rt \Delta^s OAH \leftrightarrow OCK$   $A \Rightarrow OAH \leftrightarrow OCK$   $A \Rightarrow OAH \leftrightarrow OCK$ 

 $m\overline{AH} = m\overline{CK}$ 

 $\therefore \qquad \Delta OAH \cong \Delta OCK$ 

 $\Rightarrow m\overline{OH} = m\overline{OK}$ 

(iv) Using (i), (ii) & (iii)

Given  $\overline{OH} \perp \overline{AB}$  and  $\overline{OK} \perp \overline{CD}$ 

Radii of the same circle

Already proved in (iv)

H. S postulate

# THEOREM 5

# 9.1( $\nu$ ) Two chords of a circle which are equidistant from the centre, are congruent.

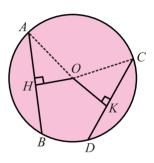
Given:  $\overline{AB}$  and  $\overline{CD}$  are two chords of a circle with centre at O.

 $\overline{OH} \perp \overline{AB}$  and  $\overline{OK} \perp \overline{CD}$ , so that  $m\overline{OH} = m\overline{OK}$ 

**To prove:**  $m\overline{AB} = m\overline{CD}$ 

Construction: Join A and C with O. So that we can form

 $\angle rt\Delta^s$  *OAH* and *OCK*.



#### **Proof:**

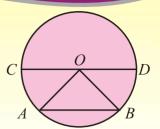
|     | Statements                                                                | Reasons                                                          |
|-----|---------------------------------------------------------------------------|------------------------------------------------------------------|
| In  | $\angle rt \Delta^s OAH \leftrightarrow OCK.$                             |                                                                  |
| • • | $hyp \overline{OA} = hyp \overline{OC}$                                   | Radii of the same circle.                                        |
|     | $m\overline{OH} = m\overline{OK}$                                         | Given                                                            |
| ··  | $\Delta OAH \cong \Delta OCK$                                             | H.S Postulate                                                    |
| Sc  | $m\overline{AH} = m\overline{CK} $ (i)                                    | Corresponding sides of congruent triangles                       |
| Ві  | $m\overline{A}\overline{H} = \frac{1}{2} m\overline{A}\overline{B} $ (ii) | $\overline{OH} \perp \operatorname{chord} \overline{AB}$ (Given) |
| Si  | milarly $m\overline{CK} = \frac{1}{2}m\overline{CD}$ (iii)                | $\overline{OK} \perp \text{chord } \overline{CD}$ (Given)        |
| Si  | nce $m\overline{AH} = m\overline{CK}$                                     | Already proved in (i)                                            |
| :.  | $\frac{1}{2} m \overline{AB} = \frac{1}{2} m \overline{CD}$               | Using (ii) & (iii)                                               |
| or  | $m \overline{AB} = m \overline{CD}$                                       |                                                                  |

**Example:** Prove that the largest chord in a circle is the diameter.

Given:  $\overline{AB}$  is a chord and  $\overline{CD}$  is the diameter of a circle with centre point O.

**To prove:** If  $\overline{AB}$  and  $\overline{CD}$  are distinct, then  $m\overline{CD} > m\overline{AB}$ .

**Construction:** Join O with A and O with B then form a  $\triangle OAB$ .



**Proof:** Sum of two sides of a triangle is greater than its third side.

$$\therefore \qquad \text{In } \Delta OAB \quad \Rightarrow \ m\overline{OA} + m\overline{OB} > m\overline{AB}$$
 (i)

But  $\overline{OA}$  and  $\overline{OB}$  are the radii of the same circle with centre O.

So that 
$$m\overline{OA} + m\overline{OB} = m\overline{CD}$$
 (ii)

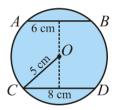
 $\Rightarrow$  Diameter  $\overline{CD} > \text{chord } \overline{AB}$ 

using (i) & (ii).

Hence, diameter *CD* is greater than any other chord drawn in the circle.



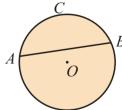
- 1. Two equal chords of a circle intersect, show that the segments of the one are equal corresponding to the segments of the other.
- 2. AB is the chord of a circle and the diameter CD is perpendicular bisector of AB. Prove that  $m\overline{AC} = m\overline{BC}$ .
- 3. As shown in the figure, find the distance between two parallel chords *AB* and *CD*.



### **MISCELLANEOUS EXERCISE 9**

**Multiple Choice Questions** 

- 1. Four possible answers are given for the following questions. Tick  $(\checkmark)$  the correct answer.
- (i) In the circular figure, ADB is called
  - (a) an arc
- (b) a secant
- (c) a chord
- (d) a diameter



In the circular figure,  $\widehat{ACB}$  is called (ii) an arc (b) a secant (a) (c) a chord (d) a diameter **.** In the circular figure, AOB is called (iii) (a) an arc (b) a secant (c) a chord (d) a diameter (iv)In a circular figure, two chords  $\overline{AB}$  and  $\overline{CD}$  are equidistant from the centre. They will be (a) parallel (b) non congruent (*c*) congruent (d) perpendicular Radii of a circle are (*v*) all equal (b) double of the diameter all unequal half of any chord (c) (*d*) A chord passing through the centre of a circle is called (*vi*) radius (a) diameter (*d*) circumference (c) secant Right bisector of the chord of a circle always passes through the (vii) radius (b) circumference (a) (c) centre (*d*) diameter The circular region bounded by two radii and the corresponding arc is called (viii) circumference of a circle sector of a circle (*a*) (*b*) diameter of a circle segment of a circle (c) (*d*) (ix)The distance of any point of the circle to its centre is called radius (b) diameter a chord (*a*) (c) (*d*) an arc Line segment joining any point of the circle to the centre is called (x)circumference (*a*) (*b*) diameter (c) radial segment (*d*) perimeter Locus of a point in a plane equidistant from a fixed point is called (xi)(a) radius (b) circle circumference diameter (*c*) (*d*)

0

(*d*)

(c)

 $\perp$ 

The symbol for a triangle is denoted by

(b)  $\Delta$ 

\_

(a)

(xii)

- (xiii) A complete circle is divided into
  - (a) 90 degrees (b) 180 degrees (c) 270 degrees (d) 360 degrees
- (xiv) Through how many non collinear points, can a circle pass?
  - (a) one
- (*b*) two
- (c) three
- (d) none
- Q.2. Differentiate between the following terms and illustrate them by diagrams.
  - (i) A circle and a circumference.
  - (ii) A chord and the diameter of a circle.
  - (iii) A chord and an arc of a circle.
  - (iv) Minor arc and major arc of a circle.
  - (v) Interior and exterior of a circle.
  - (vi) A sector and a segment of a circle.



- $\geq$  2 $\pi r$  is the circumference of a circle with radius r.
- $\nearrow$   $\pi r^2$  is the area of a circle with radius r.
- Three or more points lying on the same line are called **collinear points** otherwise they are **non-collinear points**.
- The circle passing through the vertices of a triangle is called its **circumcircle** whereas  $\perp$  bisectors of sides of the triangle provide the centre.
- > One and only one circle can pass through three non-collinear points.
- A straight line, drawn from the centre of a circle to bisect a chord (which is not a diameter) is perpendicular to the chord.
- Perpendicular from the centre of a circle on a chord bisects it.
- If two chords of a circle are congruent, then they will be equidistant from the centre.
- Two chords of a circle which are equidistant from the centre are congruent.