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Unit-13

PRACTICAL GEOMETRY-CIRCLES

In this unit students will learn how to

locate the centre of a given circle.

draw a circle passing through three given non-collinear points.

complete the circle when a part of its circumference is given,

(i) by finding the centre,

(ii) without finding the centre.

circumscribe a circle about a given triangle.

inscribe a circle in a given triangle.

escribe a circle in a given triangle.

circumscribe an equilateral triangle about a given circle.

inscribe an equilateral triangle in a given circle.

circumscribe a square about a given circle.

inscribe a square in a given circle.

circumscribe a regular hexagon about a given circle.

inscribe a regular hexagon in a given circle.

draw a tangent to a given arc, without using the centre, through a given
point p when p is the middle point of the arc, p is at the end of the arc
and p is outside the arc.

2 draw a tangent to a given circle from a point P when P is on the

circumference and when p is outside the circle.

2 draw two tangents to a circle meeting each other at a given angle.

draw direct common tangent or external tangents to two equal circles
and draw transverse common tangents or internal tangents to two equal
circles.

draw direct common tangents or external tangents to two unequal circles
and draw transverse common tangents or internal tangents to two
unequal circles.

2 draw a tangent to two unequal touching circles and two unequal

intersecting circles.

> draw a circle which touches

(i) both the arms of a given angle.
(ii) two converging lines and passes through a given point between them.
(iii) three converging lines.




INTRODUCTION:

The word geometry is derived from two Greek words namely Geo (earth) and
Metron (measurement). Infact, geometry means measurement of the earth or land. Geometry
is an important branch of mathematics, which deals with the shape, size and position of
geometric figures. We will concentrate upon simple figures namely point, straight line,
triangle, polygon and circle in this unit.

The Greek mathematicians (600-300 BC) contributed a lot. In particular “Euclid’s
Elements” have been taught as text book all over the world for centuries.

13.1 Construction of a Circle

A circle of any radius can be constructed by rotating a compass about a fixed point O.

13.1(i) To locate the centre of a given circle

Given: A circle
Steps of Construction:

1. Draw twg chords AB and CD.
2. Draw EFG as perpendicular bisector of chord
AB.

o
3. Draw PQR as perpendicular bisector of chord
CD.

> “

4. Perpendicular bisectors EFG and PQR

intersect each other at O. O is the centre of

Fig. 13.1.1

circle.
13.1(ii)Draw a circle passing through three given non-collinear points:

Given: Three non-collinear points A, B and C.

Steps of Construction:
1. Join A with B and B with C.

P — ) _ —
2. Draw LM and PQ right bisectors of AB and BC

) R~ O )
respectively. LM “and PQ “intersect at point O.

3. Draw a circle with radius OA = OB = OC having
centre at O, which is the required circle.

Practical Geometry-Circles



13.1(iii-a) To complete the circle by finding the centre when a part of
circumference is given

A
. T . 'ZQ/ D E __\/'M
Given: AB is Part of circumference of a -r= TS

~
. AN ]
circle \ AN

Steps of Construction:

1. Let C, D, E and F be the four points
on the given arc AB. T N B
2. Draw chord CD and EF.
>
3. Draw PQ as perpendicular bisector

_ >
of CD and LM as perpendicular

bisector of EF.
< > Fig. 13.1.3
4, LM and PQ intersect at O.
O is equidistant from points A, B, C, D, E and F.
5. Complete the circle with centre O and radius (OA =OB = OC = OD = OE = OF).
This will pass through all the points A, B, C, D, E and F on the given part of the
circumference.

13.1(iii-b) To complete the circle without finding the centre when a part of its
circumference is given

Given: AB is the part of circumference of a circle
Steps of Construction:

1. Take two chords CD and DE of the
suitable same length such that these are
chords of AB.

2. Produce CD to D”and DE to E such that
to get the external angle D “DE”.

3. Construct ZEEF = #DDE’ and take
mEF = mCD = mDE. Produce EF to F’.

4, Construct ZFFG = ZEEF’ and take

mFG = mCD. Produce FG to G,

Fig. 13.1.4
5. Points F" and G are on the circumference of the required circle. The dotted arcs EF

and FG are shown in the figure.

6. Continue this process of external angles of equal measure to complete the
circumference of the circle as shown in the figure,

Note: Constructing internal angles of equal measure, the circumference of the circle can
also be completed.
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=\ EXERCISE 13.1[§—

Divide an arc of any length

@) into two equal parts.
(ii) into four equal parts.
2. Practically find the centre of an arc ABC.
3. (i) If IABl = 3 cm and IBC| = 4 cm are the lengths of two chords of an arc,

then locate the centre of the arc.

(ii) If IABI = 3.5 cm and IBCl = 5 cm are the lengths of two chords of an arc, then
locate the centre of the arc.

4. For an arc draw two perpendicular bisectors of the chords PQ and QR of this arc,
construct a circle through P, Q and R.

5. Describe a circle of radius 5 cm passing through points A and B, 6 cm apart. Also
find distance from the centre to the line segment AB.

6. If IABI = 4 cm and IBCl = 6 cm, such that AB is perpendicular to BC, construct a
circle through points A, B and C. Also measure its radius.

13.2 CIRCLES ATTACHED TO POLYGONS

13.2(i) Circumscribe a circle about a given triangle.

Given: Triangle ABC.
Steps of Construction:

1. Draw LﬁN as perpendicular bisector of side AB.
2. Draw PE)R as perpendicular bisector of side AC.
3. L?V and ﬁe intersect at point O.

4. With centre O and radius

mOA = mOB = mOC, draw a circle.

Fig. 13.2.1
This circle will pass through A, B and C whereas O is the circumcentre of the
circumscribed circle.

Remember: The circle passing through the vertices of triangle ABC is known as
circumcircle, its radius as circumradius and centre as circumcentre.
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13.2(ii)Inscribe a circle in a given triangle:

&-
<

Fig. 13.2.2
Given: A triangle ABC.
Steps of Construction:

— — _ ) — —
1. Draw BE and CF to bisect the angles ABC and ACB respectively. Rays BE and CF
intersect each other at point O.
2. O is the centre of the inscribed circle.

— —
3. From O draw OP perpendicular to BC.

With centre O and radius OP draw a circle. This circle is the inscribed circle of
triangle ABC.

Remember:
A circle which touches the three sides of a triangle internally is known as
incircle, its radius as in-radius and centre as in-centre.

13.2(iii) Escribe a circle to a given triangle:

Given: A triangle ABC
Steps of Construction:

1. Produce the sides AB and AC of AABC.
2. Draw bisectors of exterior angles ABC and ACB.
These bisectors of exterior angles meet at /,.

3. From I, draw perpendicular on side BC of AABC.
Which I,D intersect BC at D. I,D is the radius of
the escribed circle with centre at /;.

4. Draw the circle with radius I,D and centre at I
that will touch the side BC of the AABC
externally and the produced sides AB and AC. Fig. 13.2.3
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Escribed circle: The circle touching one side of the triangle externally and two produced
sides internally is called escribed circle (e-circle). The centre of e-circle is called e-centre and
radius is called e-radius.

13.2(iv) Circumscribe an equilateral triangle about a given circle
Given: A circle with centre O of reasonable radius.

Steps of Construction:
1. Draw AB, the diameter of the circle for

locating.
2. Draw an arc of radius m OA with centre at
A for locating points C and D on the
circle.
3. Join O to the points C and D.
4. Draw tangents to the circle at points B, C
and D.
5. These tangents intersect at points E, F and ¢ £ il

N S
< E VAY 7
G. / + \
Fig. 13.2.4
13.2(v) Inscribe an equilateral triangle in a given circle.

Given: A circle with centre at O.
Steps of Construction:

1. Draw any diameter AB of the circle.

B

2. Draw an arc of radius OA from point A. The
arc cuts the circle at points C and D.

3. Join the points B, C and D to form straight line
segments BC, CD and BD.
Triangle BCD is the required inscribed

equilateral triangle. Fig. 13.2.5
13.2(vi) Circumscribe a square about a given circle.

Given: A circle with centre at O. D [ f S C
Steps of Construction: i
1. Draw two diameters PR and QS which bisect each r Z
other at right angle. A /" S\ N
At points P, Q, R and S draw tangents to the circle. P 0 R
3. Produce the tangents to meet each other at A, B, C
and D. ABCD is the required circumscribed square.
4 'I\/ 3& 0 B
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Given:

Steps of Construction:

1.

inscribed in the circle.

13.2(viii) Circumscribe a regular hexagon about a given circle.

Given:

Steps of Construction:

1.
2.

3.
4.
5

13.2(vii) Inscribe a square in a given circle

A circle, with centre at O.

Through O draw two diameters AC

and BD which bisect each other at /k 5\
A C

right angle. 0
Join A with B, B with C, C with D,

and D with A.

ABCD is the required square

B
Fig. 13.2.7

A circle with centre at O.

Draw any diameter AD.

From point A draw an arc of radius AO (the radius of the circle), which cuts the circle
at points B and F.

Join B with O and extend it to meet the circle at E.

Join F with O and extend it to meet the circle at C.

Draw tangents to the circle at points A, B, C, D, E and F intersecting one another at
points P, Q, R, S, T and U respectively.

Thus PORSTU is the circumscribed regular hexagon.
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13.2(ix) Inscribe a regular hexagon in a given circle:

Fig. 13.2.9(a) Fig. 13.2.9(b)
Given: A circle, with centre at O.

Steps of Construction:

1. Take any point A on the circle and point with O.

2. From point A, draw an arc of radius OA which intersects the circle at point B and F.
3. Join O and A with points B and F.

4. AOAB and AOAF are equilateral triangles therefore LAOB and ZAOF are of

measure 60° i.e., mOA = mAB = mAF.

5. Produce FO to meet the circle at C. Join B to C. Since in ZBOC = 60 therefore
mBC = mOA.

6. From C and F, draw arcs of radius OA, which intersect the circle at points D and E.

7. Join Cto D, D to E and E to F ultimately. We have

mOA = mOB = mOC = mOD = mOE = mOF
Thus the figure ABCDEF is a regular hexagon inscribed in the circle.

—— EXERCISE 13.2 f—

1. Circumscribe a circle about a triangle ABC with sides
[ABl =6 cm , IBCl =3cm R ICAl = 4cm
Also measure its circum radius.
2. Inscribe a circle in a triangle ABC with sides
IABl =5 cm, IBCl =3 cm, ICAl = 3 cm. Also measure its in-radius.
3. Escribe a circle opposite to vertex A to a triangle ABC with sides
IABl =6 cm, IBCl =4 cm, ICAl = 3 cm. Find its radius also.
4. Circumscribe a circle about an equilateral triangle ABC with each side of length 4cm.
5. Inscribe a circle in an equilateral triangle ABC with each side of length 5cm.
6. Circumscribe and inscribe circles with regard to a right angle triangle with sides,
3cm, 4cm and S5cm.
7. In and around the circle of radius 4cm draw a square.
8. In and around the circle of radius 3.5cm draw a regular hexagon.
9. Circumscribe a regular hexagon about a circle of radius 3cm.
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13.3 TANGENT TO THE CIRCLE

13.3(i) To draw a tangent to a given arc without using the centre through a given
point P:

Case (i) When P is the middle point of the arc

Given: P is the mid-point of an arc AB.

Steps of Construction: X
1. Join A and B, to form the chord AB.

. . T P S
2. Draw the perpendicular bisector of

chord AB which passes through mid
point P of AB and mid point R of AB.

3. At points P construct a right angle A? R \B
TPR.
— v
4. Produce PT in the direcg)n of P Fig. 13.3.1(a)
beyond point S. Thus TP is the
required tangent to the arc AB at
point P.
Case (ii) When P is at end point of the arc
Given: P is the end point of arc PQR.
Steps of Construction:
1. Take a point A on the arc POR. 0
2. Join the points A and P_>
3. Draw perpendicular AS at A which
intersects the arc POR at B.
4. Join the points B and P.
5. Draw ZAPD of measure equal to
that of ZABP.
Figdpe 13.3.1 (b)
6. Now m£BPD = m/BPA + mZAPD
=m4BPA + mZABP [ mLAPD = mZABP]
=90°
“

Thus  PD is the required tangent.
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Case (iii): When point P is outside the arc.

A
A
.
~.

Fig. 13.3.1 (¢)
Given: Point P is a line segmetn out side the arc ABC without knowing its centre.
Steps of Construction:
Join A to P. AP cuts the arc at E.
Find mid-point M of AP.
Draw a semi circle of radius |AM| = IMP| with center at M.
Draw perpendicular at point £ which meets the semi circle at D.
Draw an arc of radius |PD! with P as its center.

This arc cuts the given arc ABC at points 7.
Join P with 7.

NN ABN =

—
PTQ is the required tangent.

13.3(ii-a) To draw a tangent to a circle from a given point P at a given point on
the circumference:

Given: A circle with the centre O and some S
. . . T P
point P lies on the circumference.
Steps of Construction:
1. Join point P to the centre O, so that OP is
the radius of the circle.
2. Draw a line TPS which is perpendicular to
the radius OP.
% . . .
TPS is the required tangent to the circle at )
Fig. 13.3.2(a)

given point P.
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13.3(ii-b) To draw a tangent to a circle from a given point P which lies outside
the circle:
Given: A circle with centre O and some point P

out side the circle. 7, =

Steps of Construction:

1. Join point P to the centre O.

2. Find M, the mid point of OP.

3. Construct a semi circle on diameter OP, o M P~

with M as its centre. This semi circle
cuts the given circle at 7.

4. Join P with T and produce PT on both >\,‘
sides, then ?’? is the required tangent. Fig. 13.3.2 ()

13.3(iii) To draw two tangents to a circle meeting each other at a given angle:

Given: A circle with centre O, ZMNS is a given angle.
Steps of Construction:

LE
1. Take a point A on the circumference of /;Dv
circle having centre O.

Join the points O and A.
Draw ZCOA of measure equal to that of

ZMNS.
s 4 K
4. Produce CO to meet the circle at B. ﬂ\
5. mZAOB = 180° — m£ZCOA < B
M Nyl \ o
> _
6. Draw AD perpendicular to OA.
> _
7. Draw BE perpendicular to OB. Fig. 13.3.3
> >
8. AD and BE intersect at P.
9. mZAOB + m/APB = 180°, that is, mZAOB = 180° — mZAPB

10. From step 5 and step 9, we have
180° = mZCOA = 180° — mLAPB = mZCOA = mZAPB

=  mZAPB=m/MNS (" mZCOA = mZMNS)

« >
11. AP and BP are the required tangents meeting at the given ZMNS.
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13.3(iv-a) To draw direct or (external) common tangents to equal circles:

A A
< <

A A’

N (7T

/N
v

A
\4

B B'
y

Fig. 13.3.4 (a)
Given: Two circles of equal radii with centres O and O’ respectively.
Steps of Construction:

1. Join the centres O and O’.

2. Draw diameter AOB of the first circle so that AOB L O0'.

3. Draw diameter A’O’B’ of the second circle so that A’O’B’ L OO'.
4, Draw ZX' and <1_31_3) " which are the required common tangents.

13.3(iv-b) To draw transverse or (internal) common tangents to two equal
circles:

Given: Two equal circles with centres O and O’ respectively.

Steps of Construction: ]
1. Join the centres O and O
2. Find mid-point M of 00", 0
3. Find mid-point N of MO
4 Taking point N as centre and radius equal
to mMN, draw a circle intersecting the
circle with centre O “at points P and P, o
5. Draw a line through the points M and P
touching the second circle at the point Q. N\
6. Draw a line through the points M and P’ /\
touching the second circle at the point Q. Fig. 13.3.4 (b)

H VaXd M
Thus PQ and PQ” are the required
transverse common tangents to the given

circles.

Practical Geometry-Circles



13.3(v-a) To Draw direct or (external) common tangents to (two) unequal circles:

Fig. 13.3.5 (a)
Given: Two unequal circles with centres 0,0 and radii r, r”(r > r’) respectively.
Steps of Construction:

1. Join the points O and O’.
2. On diameter OO, construct a new circle with centre M, the mid-point of 00",
3. Draw another circle with centre at O and radius = r — 7/, cutting the circle with
diameter OO “at P and Q.
4. Produce OP and OQ to meet the first circle at A and B respectively.
— —
5. Draw OA’ll OA and O B’Il OB.
6. Join AA” and BB’ which are the required direct common tangents.

H/ HI
Thus AA and BB are the required common tangents.

13.3(v-b) To draw to transverse or internal common tangents to two unequal
circles:
0

<

0

Fig. 13.3.5 (b)
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Given: Two unequal circles with centres O, O” and radii r, 7’ respectively.
Steps of Construction:

1. Join the centres O and O’ of the given circles.

2 Find the mid point M of OO’.

3. On diameter OO’, construct a new circle with centre M.

4 Draw an other circle with centre at O and radius = r + ¢’ intersecting the circle of
diameter OO’ at P and Q.

5. Join O with P and Q. OP and OQ meet the circle with radius r at A and B
respectively.

—_— —_—
6. Draw OB’Il OA and OA”Il OB.
< <

7. Join A with B” and A” with B. Thus AB’and A’B are the required transverse common
tangents.

13.3(vi-a) To draw a tangent to two unequal touching circles:

Case I:

Given: Two unequal touching circles with centres O and O
Steps of Construction:

— \
1. Join O with O”and produce OO “to meet the circles at ‘ 4
the point A where these circles touch each other. Fig. 1

2. Tangent is perpendicular to the line segment OA.

3. Draw perpendicular to OA at the point A which is _
. Fig. case-1
the required tangent.
Case II:
Given: Two unequal touching circles with centres O and O
Steps of Construction:

1. Join O with 0% 0O “intersects the circles at the point

B where these circles touch each other. See Fig. 2.

2. Tangent is perpendicular to line segment containing
the centres of the circles.

3. Draw perpendicular to OO~ at the point B which is

the required tangent.

Fig. case-II
Fig. 13.3.6 (a)

13.3(vi-b) To draw a tangent to two unequal intersecting circles:
Given: Two intersecting circles with centres A and B.
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Steps of Construction:

1. Take a line segment AB.
2. Draw two circles of radii r and r; (where r > r|) with centres at A and B respectively.
3. Taking centre at A, draw a circle of

radius r —r,.
. Bisect the line segment AB at point M.
5. Taking centre at M and
radius = mAM = mBM , draw a circle
intersecting the circle of radius r — r,
at P and Q.
6. Join the point A with P and produce it to

meet the circle with centre A at D. Also

join A with Q and produce it to meet the

circle vg[h centre A at C.
7. Draw BN parallel to AD, intersecting the Fig.vl3.3.6 )
circle with centre B at T.

>
8. Draw a line joining the points D and 7. DT is a common tangent to the given two
circles.
. - H/.
9. Repeat the same process on the other side of AB. CT"is also a common tangent to the

given two circles.
13.3(vii-a) To draw a circle which touches both the arms of a given angle:

Given: An angle ZBAC.
Steps of Construction:

C

H
1. Draw AD bisecting ZBAC.
H
2. Take any point E on AD.
— —
3. Draw ET perpendicular to AC
H
intersecting AC at the point F.
4, Draw a circle with centre E and radius 4 f l:i’>
mEF. Fig. 13.3.7 (a)

This circle touches both the arms of ZBAC.
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13.3(vii-b) To draw a circle touching two convergent lines and passing through a
given point between them:

Fig. 13.3.7 (b)

. H H 0 .
Given: BS and CT are two converging lines.
Steps of Construction:

« >
Produced BS and produced CT intersect at A.
_)
Draw AD bisecting ZBAC.
ﬁ
Take any point E on AD.
— >
Draw EF perpendicular to AB.
Draw a circle with centre E and radius mEF.
« <«
This circle touches AB and AC.
%
Draw AP which cuts this circle at the point H. Join E and H.

- —
Through P, draw PZ |l HE intersecting AD at the point O.

R A R B e

Draw a new circle with centre O and radius mOP. This circle touches both the lines.

13.3(vii-c) To draw a circle which touches three converging lines
Note: It is not possible to draw a circle touching three converging lines.
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10.
11.

(i)
(iii)
(iv)

)
(vi)

——LJ EXERCISE 13.3 [f—

In an arc ABC the length of the chord IBCl = 2 cm. Draw a secant IPBCl = 8 cm,
where P is the point outside the arc. Draw a tangent through point P to the arc.

Construct a circle with diameter 8 cm. Indicate a point C, 5 cm away from its
circumference. Draw a tangent from point C to the circle without using its centre.

Construct a circle of radius 2 cm. Draw two tangents making an angle of 60° with
each other.

Draw two perpendicular tangents to a circle of radius 3 cm.

Two equal circles are at 8 cm apart. Draw two direct common tangents of this pair of
circles.

Draw two equal circles of each radius 2.4 cm. If the distance between their centres is
6 cm, then draw their transverse tangents.

Draw two circles with radii 2.5 cm and 3 cm. If their centres are 6.5 cm apart, then
draw two direct common tangents.

Draw two circles with radii 3.5 cm and 2 cm. If their centres are 6 cm apart, then
draw two transverse common tangents.

Draw two common tangents to two touching circles of radii 2.5 cm and 3.5 cm.
Draw two common tangents to two intersecting circle of radii 3 cm and 4 cm.

Draw circles which touches both the arms of angles (i) 45° (ii) 60°.

MISCELLANEOUS EXERCISE - 13

Multiple Choice Questions

Three possible answers are given for the following questions. Tick (v') the
correct answer.
The circumference of a circle is called

(a) chord (b) segment (c) boundary
A line intersecting a circle is called

(a) tangent b) secant () chord
The portion of a circle between two radii and an arc is called

(a) sector (b) segment (¢ chord
Angle inscribed in a semi-circle is

@ 5 ® 3 © 5

The length of the diameter of a circle is how many times the radius of the circle
(a) 1 (b) 2 (c) 3

The tangent and radius of a circle at the point of contact are

(a) parallel (b) not perpendicular (¢) perpendicular
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Circles having three points in common

(a) over lapping () collinear (c) not coincide
(viii)  If two circles touch each other, their centres and point of contact are

(a) coincident (b) non-collinear (c) collinear
(ix) The measure of the external angle of a regular hexagon is

@ 3 ® g © %
(x) If the incentre and circumcentre of a triangle coincide, the triangle is

(a) an isoscenes  (b) aright triangle (c) an equilateral
(x1) The measure of the external angle of a regular octagon is

@ 7 ® g © 3
(xii)  Tangents drawn at the end points of the diameter of a circle are

(a) parallel (b) perpendicular (c) Intersecting
(xiii)  The lengths of two transverse tangents to a pair of circles are

(a) unequal (b) equal (c) overlapping
(xiv) How many tangents can be drawn from a point outside the circle?

(a) 1 (b) 2 (o) 3

(xv)  If the distance between the centers of two circles is equal to the sum of their radii,
then the circles will

(a) intersect (b) do not intersect
(c) touch each other externaly
(xvi) If the two circles touches externally, then the distance between their centers is equal
to the
(a) difference of their radii (b) sum of their radii

(c) product of their radii
(xvii) How many common tangents can be drawn for two touching circles?

(a) 2 (b) 3 (o) 4
(xviii)) How many common tangents can be drawn for two disjoint circles?
(@ 2 b 3 o 4
2. Write short answers of the following questions
1) Define and draw the following geometric figures:
(a) The segment of a circle. (b) The tangent to a circle.
(c) The sector of a circle. (d) The inscribed circle.
(e) The circumscribed circle. ) The escribed circle.
(ii) The length of each side of a regular octagon is 3 cm. Measure its perimeter.

(iii)) ~ Write down the formula for finding the angle subtended by the side of a n-sided
polygon at the centre of the circle.

@iv) The length of the side of a regular pentagon is 5 cm what is its perimeter?
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(i)

(i)
(iii)
(iv)

v)
(vi)
(vii)
(viii)
(ix)
(x)
(xi)
(xii)
(xiii)
(xiv)
(xv)
(xvi)
(xvii)
(xviii)
(xix)

(xx)
(xxi)
(xxii)
(xxii1)
(xx1v)
(xxv)

Fill in the blanks

The boundary of a circle is called
The circumference of a circle is called of the circle.
The line joining the two points of circle is called

The point of intersection of perpendicular bisectors of two non-parallel chords of a
circle is called the

Circles having three points in common will .
The distance of a point inside the circle from its centre is ___than the radius.

The distance of a point outside the circle from its centreis ________ than the radius.
A circle has only centre.

One and only one circle can be drawn through three points.

Angle inscribed in a semi-circle is a angle.

If two circles touch each other, the point of and their are collinear.

If two circles touch each other, their point of contact and centres are

From a point outside the circle tangents can be drawn.

A tangent is to the radius of a circle at its point of contact.

The straight line drawn L to the radius of a circle is called the to the circle.
Two circles can not cut each other at more than ______ points.

The L-bisector of a chord of a circle passes through the

The length of two direct common tangents to two circles are ______ to each other.
The length of two transverse common tangents to two circles are to each
other.

If the in-centre and circum-centre of a triangle coincide the triangle is
Two intersecting circles arenot ____

The centre of an inscribed circle is called

The centre of a circumscribed circle is called

The radius of an inscribed circle is called

The radius of a circumscribed circle is called

—4 SUMMARY —
A circle of any radius can be traced by rotating a compass about fixed point.

The perpendicular bisectors of two non-parallel chords of a circle intersect at a point
which is known as centre of circle.

A circle can be drawn through given three non-collinear points.
When a part of circumference of a circle is given, the circle can be completed.

If a triangle, the circumscribed circle, inscribed circle and escribed circle opposite to
each vertex can be constructed.

If a circle is given, then the circumscribed and inscribed equilateral triangles can be
constructed.

For a given circle, the circumscribed and inscribed squares can be drawn.
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Practical Geometry-Circles

For a given circle, the circumscribed and inscribed regular hexagon can be
constructed.

We can draw tangents to a given arc as its mid point, its any end point, and a point
not on the arc.

Tangents can be drawn to a given circle, when a point is an its circumference and
from a point outside the circle.

Tangents to two unequal touching circles can be traced.

Direct or transverse common tangents of two equal circles or two unequal circles can
be drawn.

We can construct a circle touching the arms of a given angle.

A circle passing through a given point between two converging lines and touching
each of them, can be traced.



—4 ANSWERS =

Unit 1: Quadratic Equations

EXERCISE 1.1
1. (i) quadratic, x> + 4x — 14 =0 (i)  quadratic, 7x>-3x+7=0
(iii)  quadratic, 4x* +4x—1=0 (iv)  pure, ?-1=0
(v) pure, x-20=0 (vi)  quadratic, x> + 29x + 66 = 0
-5 2
2. @) (-4, 5} (ii) {0,7 } (iii) {—2, ﬁ}
3
iv)  {-8,19} v) (3, -4} (vi) {5, 5}
—1£242 2 +4la?2+4 1
3. ) {%} (i) { i } (iii) {3, T }
(iv) {_m == “2”;2 = 41”} ) {0, _?7 } vi) (=13, 15)
.. 3 1 33 .
(vii) {—5, 7} (viii) {— 2 7} (ix) {1,3}
(x) {—3a,4a}
EXERCISE 1.2
. —7 +4/57 .. -4 £4/11 4
1. @) { 5 } (i1) {QSE} (iii) {\/5 , — \/_§ }
3 +£4/233 13 -4 £4/10
wm PR o ) e B
(vii)  {3,7} (viii) {3,‘;4 }
1 l
(ix) {(a +b) .5+ b)} (x) { T }
EXERCISE 1.3
1 1 16
1. {i\ﬁ,i\/g} 2. {iﬁ,i2} 3. {625,1}
3
4. {216, 729} 5. {g, 1} 6. {-1,0, 1}
7. (6} 8. {i %} 9. {—7a 5 }
10, {#1,1++/2} 11. {1,—2,—%} 12.  {-3,0}
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{0, -1} 14. {24} 15. {1,3,2+~/33}
16.  {-4,-25.7)

EXERCISE 1.4
1 2 2 1 (_—ZE ) 3 2l B
. -1.-% . { }, 9 Xtraneous . 16 , (-1 Extraneous)
4. {7}, (~12 Extraneous) 5. {4} 6. {31 7. ¢ or { }

8. {0}, (-3a Extraneous) 9. {ﬂ} 10. {4_3 ty2

0 > } 11. {-3,0}

MISCELLANEOUS EXERCISE 1
1. Multiple choice questions:
» (b (i) () (i) (o) iv) (a)
v) (o) (vi) (D) (vi)) (@) (viii) (c)
(ix) (@)
2. Short answers:
() -1+3 (i) 0,3 (iii) 3x2—2x—-48=0
(iv) (a) Factorization (b) Completing square (c) Quadratic formula
W 31 o) 36
3. Fill in the blanks:
(@ ax?+bx+c=0 ) 3
—b £ l 2 _
(iii)) Completing square @iv) bt Zba dac
v) {i %} (vi) Exponential (vii) {3}

(viii) Reciprocal (ix) Extraneous (x) Radical sign

Unit 2: Theory Of Quadratic Equations

EXERCISE 2.1
1. 6)) 17 (i) -8 (iii) 0 (iv) 81
. . .. . . —3x-47
2. (1) real, rational and unequal, x =8, 15 (i1) imaginary, x = 2
3
(iii) real and equal, x = 1
-7+
(iv) real, irrational and unequal, x = L 3 205

Answers



2

3. k=—%,1 4. (1) k=2,3 (i1) k=-1,0 (i) k=1
6 a=mc
EXERCISE 2.2
1. ) -1, —m, —®? (i1) 2,20, 20?2
(ii1) -3, -3m, -30? @iv) 4, 4m, 40?
2. @) 128 Gi) 1024 Gii) 125 @iv) 24
v) 128 ~i) 2 i) -6 (vii) -1
EXERCISE 2.3
. ) 7 .-l
1. @) S=5,P=3 (i) S=—3,P— 3
9 5, r . __a __b
(i) S_p’P_p ) S=0p-P=avp
m+n n—1 . Sm _ 9n
™ S== e PEr, i) §=77.P=7
. 3 .. 2
2. @) k= 3 (i) k= 3
. 64 ..
3. (1) k=g (i1) k=-1,2
: .. 13
4. @®  p=0 i)  p=7y
) . 10
5. @) m=-55 (ii) m=5 (iii) m=—"
. 3 .
6. @) m=y (i) m=1
EXERCISE 2.4
. . 1
1. i  p’-2q i)  q@*-29 i) o (*-29)
. 5 .. 5 . 235
2. @) 6 (i1) 1 (i11) 9 @iv) -6
2
3. (i) '73” (i) # [m2 — 2In]
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Answers

11.

12.

13.

EXERCISE 2.5

(a) xX2—6x+5=0 (b) 2—-13x+36=0
() xX2—-x-6=0 (d) x2+3x=0

(e) X2+4x-12=0 () xX2+8x+7=0
(2) xX2-2x+2=0 (h) X2—6x+7=0
(a) x2—8x+31=0 (b) X2 +3x+36=0
(©) 6x2-3x+1=0 (d) 2x2+x+2=0

(e) 2x2-Tx+3=0

(@ 2-P?-29x+q¢*=0 (b)) g-(p*-29)x+q=0
EXERCISE 2.6

(i) Ox)=x+6;R=-7 (i) Q()=4x2—12x+31;R=-78

(i) Q) =x2+3x+3;R=38

1) h —3 (i1) h=6 (iii) h=-5
(i) l=—%,m=—18 (i) l=2,m=—%
. .. 1 -3
@) -6,2.4 (i) -2, 5,3 (iii) E -1,2
(1) -3,-1,1,3 (i1) -4,-2,1,3
EXERCISE 2.7
{4, D, 6,11)} 2. {1, D), (-5-8)}

7 =7 —-b a—->b
le-.3.3) v e (5250
{=3,2), (-1,-2)} 6. {©.1),=3-2}

{#2,+3)} 8. {2, £\2)}
5-1\(-51
{&L D} 10. {( : 3) (?, 5), (1, 1), (—1,—1)}

{(31)(3—1)(3 )
szfzz\f (\Sf \3f
\/_

BHEH

(5 )
)

EET)
Z




13, 14 2. 4,5,6. 3. 12
-1
(3, 6), (6, 3) 8. x=5,y=4 9. 11,7

25cm by 15 cm or 15 cm by 25 cm

MISCELLANEOUS EXERCISE 2

Multiple choice questions:

i (o) (i) (b)
v) (@ (vi) (b)
(ix) (d) x) (¢
(xiii) (c) (xiv) (d)

Short questions:
@) (a) imaginary
(c) (real) irrational, unequal

(ii) wh%B
(vi) 0 (vii) 64

(ix) QO =x>+5x+10, R=22

1
(xii) 30
(xiv) (a) x2+5x+7=0
Fill in the blanks:
(i)  b*-4dac (i) equal

(v)  rational (vi) 1irrational
.5 =9
(ix) 5 ® =
(xiii) zero (xiv) w?

(xvi) X2+2x+4=0

EXERCISE 2.8

(b) x2—10x+28=0

(ii) (b) (iv) (a)
vii) () (viii) (c)
(xi) (a) (xii) (a)
(xv) (d) (xvi) (a)

(b) (real) rational, unequal

(d) (real) rational equal

Gv) 1

(viii) x2+3x+9=0

3q
p

-39 13 =87
(i) @ J& b) -5 © 34C

2
(xi) Sum=->% Product = — ;r

(iii) real (iv) imaginary
. b . C
(vil) — P (viii) p
L N )
(x1) op xii)) 1,w,w

xv) X2—(a+Px+af=0
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Unit 3: Variations

EXERCISE 3.1
. 3 .. 3
1 @) 3 5;5 (i1) 3:2;5
. 11 1
(iv) 11:24;ﬁ ) 1:3;3
2. @) 7:12 (>ii) 7:5
3. 4:5 4. p=8 5. x=1 6.
7. x=2; 8and?26 8. Rs. 400 9.
10. @) 7 (ii) 9bx
11. @) x=2 (>ii) x=1
iv) x=p*-4? (v) x=4
EXERCISE 3.2
1. @) y=4x (ii) y=20 (iii)
2. @) yzgx (i1) x=15,y=42
3. R:%T,R:40,T:32 4, R=32 5.
14 1
— 33 W= — —=
6. w=3u’, w=2375 7.y V=9 8
3 4 18 1
9 W= W=y 10. A_rz,r_iz 11.
135 5 3 128 16
12. V=7,V 3:"=2 13 m=" 3, m=5y,n=
EXERCISE 3.3
1 (6)) 24 (ii) 9a (iii)
(iv)  2+xy+)2)° (V) (x-2p)? (vi)
2 6] 24 (ii) Ox4 (iii)
5x3 v) p-gq (vi)

Answers

16

16:11;11

(iii)

x=23; 15and?24
51:7

(iii) 4]

(i) x=38




NA P

. .. 4b—a 2(z2—y?
W 2 G 2 Gy ot v A
) 2 (vi) {% , 13—1} (vii) £ % (extraneous root), ¢ or { }
(viii)  {2p, -2p} (ix) {7}

EXERCISE 3.5
— 14142 % 2 — L 2 LI 3 — 3_.7(:3 2
=79y *'5 : W=36%07% 3 V=203
72 21 _Iod 14 1355
u=4yz3,8 5. V= 8Z2,3 6 w= 143’8
EXERCISE 3.7
(i) A =48 Sq. Units (i) 1=2
S=4nr?,r=3
(i) S=2.51in (ii) F=16lb
I=45cp 5. d=20ft 6. Rs. 297000
[=20ft 8. p=12hp 0. 968000
MISCELLANEOUS EXERCISE 3
Multiple choice questions:
»H (b (i) (o) (i)  (b) iv) (a)
v) () (vi) (a) (vin) (d) (viii) (b)
(ix) (a) x) (a) (xi)  (c) (xi1) (b)
(xiii) (a) (xiv) (d) (xv) (a)
Short Questions:
(vi) x=10 (vii) y= i% (viii) v=2
. 21 ] 4
(ix) e (%) +28 (xi) 7
§ 822 18
xii) y= 7z (xiii) z=6xy (xiv) 2
Fill in the blanks:
@) ;%i (ii) Antecedent (iii) Consequent
@iv) Extremes v) Means (vi) p=14
(vil) m=8 (viii)  ky (ix) %

EXERCISE 3.4
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(x) p*w (xi) % (xil) 2

(xiii)  +2mn?p3 (xiv) m=%6

Unit 4: Partial Fractions
EXERCISE 4.1
4 3 -1 2 1 2
1. x+1+x—3 c x—4+x+3 3. x—1+x+1
-1 2 2 1 3 4
4. x—1"x+3 > x—1"x+2 6. x-4%x-3
9 4 5 1
7. 1+5(x—2)_5(x+3) 8. 2x+3+3x+1+x—1
EXERCISE 4.2
|2 1 1 , 2 1 1
Cx 1t Tx2 Cx+2 T (x+22 x+3
1 1 3 1 1 2
3 1 T x+2 Gty 4oxt -2t
5 =6 2 3 ‘ 1 1 1
C3xr2 T x Al Tt 1) CAx+ D) 4x-1) 20— 12
3 2 1 1 1
(O I Sy 8 4G—1) ax+ 1) 24+ 1)
EXERCISE 4.3
L =2 -3 , 12 1
Cx+3t 24 " 52+ 1) 5(x+3)
3 1 x—1 4 17x -6 17
T 2(x+ 1) 2(1+x2) " 5(x2+1) 5(x+3)
s 2 2x + 33 6 1 x=2
C 13+ 3) T 132 + 4) T 2x+2) T 202 + 4)
7 1 3 x—2 g 2 x+1
T3+ 1) 3(2—x+ 1) C 3+ 1) 302 —x 4 1)
EXERCISE 4.4
| X 4x ) 1 X
24 (2ray S+ DT+
3 1 x—1 x—1 n 1 x+ 1 x+1

41+x) 42+ 1) 202+ 1)2 A4x—1) 402+ 1) T 2(1 + 222

Answers



1=

4 4 2x X
2127 (222 6.x= 21 2 1)
1) () (i1) (¢) (iii) (b) (iv) (d) (v) (0
(vi) (¢) (vii) (b) (viii) (@) (ix) (b) (x) (©)
- 5 . 1 1
(V)x+2+x+3 (Vl)Z(x—l)_Z(x+1)
(vii) % (x_% -2 i 1) (viii) ﬁ v _3 e
(ix) % LC _}_ aty 1 a} (x) Yes it is an identity.
EXERCISE 5.1
@»  {1,2,4,5,7,9} (ii) {4,9} (iii) {1,2,4,5,7,9}
(iv) {4,9}
(1) Yu({13,17} Gi) Ywu{13,17} i) {2,3,5,7,11}
Gv) {2,3,5,7,11}
i Yu{13,17} @) T (i) ¥
(iv) @ v @ i) T
1 {18,20,21, 22,24, 25} (ii) {18, 20, 21, 22, 24, 25}
(i) {4,5,---, 10, 12, 14, 15, 16, 18, ---, 25}
@iv) {4,5,---,10,12,14,15, 16,18, ---,25}
@) {2, 6,10, 14, 18} (i1) {24}
n @ (i1) {0}
EXERCISE 5.2
» {o,1,2,3,---,20,23} (i) {0,1,2,3,--, 20,23} (iii) D
iv) @ wv) {1,2,3,5,7,---,19}
i) {1,2,3,5,7,---,19} (vii) {3,5,7,11,13,17, 19}
(viii) {3,5,7,11,13,17,19}
EXERCISE 5.4
AXB = {(a,¢), (a, d), (b, ¢), (b, d)}
BxA = {(c,a), (c,b),(d, a),(d D)}
AXB = {(0,-1),(0,3),(2,-1),(2,3), 4,-1), (4, 3)}
BxA = {(-1,0),(-1,2),(-1,4),(3,0),(3,2),(3,4)}
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Answers

AXA

{(0,0),(0,2),(0,4), (2,0, (2,2), (2,4), (4,0), (4, 2), (4, 4)}

BxB = {(-1,-1),(-1,3),(3,-1), (3, 3)}
i) a=6, b=3 i) a=1, b=7 (iii) a=13—0, b=-6
X ={a,b,c,d}; Y = {a}
i 6 (i) 6 (i) 9
EXERCISE 5.5

R = {(a,3), (b,4). (¢, 3)}
Ry = {(a,4), (b, 3),(c, 4)}
Ry = {(3,a), (4, a)}
Rs = {(3,D),(4,0), 3, ¢), (4, 0)}
Ry = {(=2,-2), (=2, ), (1,2), 2, 2)},
Dom R;={-2,1,2}=L, Range R ={-2, 1,2}
R, = {(-2, ). (1, 1), (-2, 2)};
Dom R,={-2,1}, Range R, = {1, 2}
Ri={@a,@b) 5  Ro={(bo(c0)
Ri={@d, (b9} :  Ro={@h be).(ch)
Ri={de@pl 5  Ro={@o(hp ()
IS _ 25
» R =1{G3,2),42),6,2),43),5,3)}
(i) Ro={(22),3,3).6,5]}
(i) Ry = {(1,5),(3,3),(4,2)}
iv) R4 = {(1,3),(3,5).,(5,7}
(i)  Bijective

Dom R;= {1,2,3,4}, Range R, = {1, 2, 3,4}
(ii)) Relation

Dom R,= {1,2,3}, Range R, = {1, 2,4, 5}
(iii)) Function

Dom R3= {b,c,d}, Range R; = {a}
(iv) Onto function

Dom Ry= {1,2,3,4,5}, Range Ry = {1, 3,4}
(v)  One-one function

Dom Rs= {a,b,c,d}, Range Rs = {a, b, d, ¢}

D



(vi) Relation

Dom Rg= {1,2,3}, Range Ry = {2, 3, 4}
(vii) One-one function

Dom R;= {1, 3,5}, Range R; = {p, r, s}
(viii) Relation

Dom Rg= {1,3,7}, Range Ry = {a, b, ¢}

MISCELLANEOUS EXERCISE 5
1. MCQ's

(1) (c) (i) (d) (ii1) () (@Gv) (b (v) (d)
(vi) (o) (vii)  (d) (viii)  (¢)  (ix)  (b) (x) (a)
(xi)  (¢) (xit)  (c) (xiii)  (a)  (xiv) (d) (xv)  (c)
(xvi) (b) (xvii) (b) (xviii)  (c¢) (xix) (b) (xx) (c)
2. Short Questions:
@) Def. Ex. A={1,2,3},B={1,2,3,4,5}. Aisa subset of B.

i) ¢, {a}, {b}, {a, b}

(x) @) ANBY=A"UPB (i) AUB)Y = A'NnB
3. Fill in the Blanks:

@) B (i) Disjoint sets (iii)) A=B

@iv) ANB)UANO ) AUBNAULO

(vi) 0 (vi) U (viii)) ¢

(ix) U x) A\B (xi) IIIrd quadrant
(xii)  IVth quadrant (xiii) Zero (xiv)  Zero

xv) {a,b,c} (xvi) {a, b, c} (xvii) John Venn
(xviii) Binary relation (xix) onto (xx)  not

4 EXERCISE 6.1

Classes 2—3 | 4—5 | 6—7 | &9 | 10—11 | 12—I13 | 14—I15
Frequency 2 1 9 5 6 5 3
a) 6—7Db) 4—5

EXERCISE 6.2
3. (i) 24.5 (ii) 290
4. (i) 24.5 (ii) 290
5. 32.5
6. AM = 9.620 G.M=8.553 H.M = 8.089
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6. AM=9.620
7. Mode =9, 4
8 Mode =2
9

. Mean = 10.478
10. (i) Weighted Mean = 74 marks
11. Weighted Mean = 41.15 rupees per litre

G.M=8.553

Median=7
Median =2
Median = 10.625

(i)

HM = 8.089

Mode = 13.5
Mean =72.8 marks

12.
2001 2002 2003 | 2004 2005 2006 | 2007 2008 2009 | 2010
——————— 113.33 | 126 142.66 | 159.33 | 178 195.33 | 208.67 | 220 e
EXERCISE 6.3
4. Range = 3500 S.D. = 1417.886
5. a- (1) S.D.=4.87 (i1) S.D. =3.87 b- Variance = 6.85
6. Mean = 27.0935 S.D. =3.136
7. Range =43
MISCELLANEOUS EXERCISE 6

L. (1) (b) (i1) (b) (111) (a) (v) (¢) (v) (b)

(vi) (a) (vii) (a) (viil) (a) (ix) (b) (x) (¢)

(xi) (b) (xii) (a) (xiii) (c) (xiv) (c) (xv) (a)

(xvi) (a) (xvii) (b) (xviii) (b) (xix) (a) (xx) (b)

(xx1) (a) (xxii) (¢)

Unit 7: Introduction to Trigonometry
EXERCISE 7.1 y
¥ 0
90° ygoo 90
o T//lo o 1350 Oo
Lo & 00 e (i) B 2T 05 i) O
270° 270° 270°
y
Y 900 _2700/{ —2700
22% . , , -180° T 0°
(iv) 180 9 (v) ~180 0 > x

Answers




. (i) 45.5° (i1) 60.5083°  (iii) 125.3805°
3. (i) 47°21736”  (ii) 125°27 (iii) 225°45"  (iv) =22°30"  (v) —67°34'48”

(vi) 315°10°48”

N LT ... 3n R -5m
4. (i) 6 (i) 3 (iii) e (iv) e V) o

-5 5 7

= (viD) 3 (vii)
5. (i) 135° (ii) 150° (iii) 157.5° (iv) 146.25° (v) 171.8869°

(vi) 257.83° (vii) —=157.5°  (viii) —146.25°

EXERCISE 7.2
. (1) 0.57rad (i1) 1.8rad 2. (i) 15.4cm (i1) 15.84 mm
3. (1) 16cm (i1) 66.21 cm 4, 18m 5. 220m
6.  Srad 7. 12.57cm 8  105.56 cm?
P 2 49

9.(a) 18.85cm (b) 157.08 cm 10. 13 m? or 8.55m?

11. 2972.39 cm?>  12. 31.42 cm? 13. 5 rad.
EXERCISE 7.3
v 90"
L i 180°\$700 5 0° Positiye cotermipal angle 360° 40- 170° = 530°
0 Y negative coterminal angle —190

Positive coterminal angle 60°
negative coterminal angle is —300°

(i)
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10.

11.

X

iy —180° > ° Positive coterminal angle is 260°
YW 1000 negative coterminal angle —360° — 100° = —460°
-90°
-270°
Y
(v) —180° X, >o° Positive coterminal angle 220°
/éﬁ 500° negative coterminal angle —140°
-90°
(i) 90°, 180°  (ii) 270°, 360° (iii) 540°, 630° (iv) 0°, 90°
. LY N T N
1) 0, ) (i1) 2 T (iii) 0O, 5 @iv) 7. T
(i) I (ii) 1T (iii) TV G (W1 (vi) TII
(1) +ve (i1) —ve (iii) —ve @iv) =ve (V) +ve (vi) —ve
o 3 N3 2 13 =)
(1) I, 31n9:\/1—3 ; cosecl= 3 cose—\/l—?) psecl=— ) tan9— ccotd=—"% 3

W

—4 =5 -3 -5 4
(i) I, sinez? ; cosecQ:T ; cos@z? y sec&z?; tan@= 3 cotH:Z

(1) I, sinQ:% ; cosecﬁz\/g ; cost9zx/2 ; sece=\/:; tanﬁz% ; cotﬁz\ﬁ
=3 a5 3 x5 o A5

secl= 5 ;sinf= 3 ;cosec¢9=\/§ or 5 ;tan@= > ;cotH—\/—

(98]

(9]

—4 -5 -3 -5 3
sinH:?;coseCG:T;cosﬁz?;se09=?;cot9=z
tanf=-1; sect9=\/§ ; cosecl = —\/5

12 5 13 12 5
sinf=75 13° cosl="5 13 secl0="7 55 stanf@= "7 3 coté?—

4 3 7
(D) smH-iﬁ ; cosecé’—\/— cos@=7 4> secO0=7% 35 ‘[ané’:ls,E ;cot@= \/—

8 17 15 17 8 15
(i) sinf=7~ 17° cosecl="75 g ;cosf=—5 17° secl0=7% 15 stanf@=7¢ 15° cotfd="4o 3
7. o 20

2410
(iii) sin@= 7 ; cosecl=

ta—i
RSP NIT)

7 3
2\/1—0;0059:7;sec6’:3 ;tan@= 3

Answers @




12.

Q.1.

Q.2.

Q.3.

1) \B (i1) \/3 (i11) \/§ av) 1  (v) > (vi) \B (vii) 0 (viii) O
R S T
0=~ W7 G G
EXERCISE 7.4
tan2x 2. tan2x 3. sinx 4, sinZx
tan2x 6. cosZx
EXERCISE 7.5
59.74° 2. 18.652m 3. 75.5°or 75°30/
27.47° 5. 4924.04m 6. 33564 m 7. 28.72m
0.199 miles 9. 25.94 feet 10. 2928.2 feet 11. 164m ; 164m (or 163.93)
20.33 meter
MISCELLANEOUS EXERCISE 7
1) (@) (i) (d) (i) (o) (iv) (D) (v) (¢)
(vi) (D) (vii) (@) (viii) (b) (ix) () (x) (b)
(iii) 10800” (v) 45° (vi) 1n—2 rad. (vii) 2 rad. (viii) 71.27cm  (x) 49—0
(i) 180° (i) 11T (i) IV (iv) %ﬂe (v) 6 cm?
(vi) 2km + 120° where k=1 (vii) 8 =30° or % rad (viii) 2
1 —sinB
: 2 _—
(ix) cosec?0 (x) cosh
Unit 8: Projection of a Side of a Triangle
EXERCISE 8.1
2.646cm 325 sq cm 2. mAC =2 \/2_9 cm
EXERCISE 8.2
mBC =~ 5.29 cm 2. 5.45 cm
MISCELLANEOUS EXERCISE 8
~ 4.58 cm 4. ~4.12 cm 5. 15cm
6 cm 7. 90° 8. ~ (61.9)°
Acute angled 10. Right angled

Mathematics 10



3. 10 cm

3. 7 cm

L. i (o
(v) (a)
(ix) (@)
(xiii) (d)

2. 4 cm

1. i (o
) (d)
(ix) (¢)
(xii1) (b)

L. @ (@)
) (a)
(ix) (a)

L. ® (o
V) (®)
(ix) (d)

Answers

Unit 9: Chords of a Circle

EXERCISE 9.1
4. ~ 14.97 cm

EXERCISE 9.2

MISCELLANEOUS EXERCISE 9

(i) (a) (iit) (d) @iv) (o)
(vi) (b) (vii) (¢) (viii) (b)
(x) (0 (x1) (b) (xii) (b)
(xiv) (c)
EXERCISE 10.2
3. ~ 16.96 cm
MISCELLANEOUS EXERCISE 10

(i1) (a) (iii) (d) @iv) (b)
(vi) () (vii) (b) (viil) (d)
(x) (a) (xi) () (xii) (b)

Unit 11: Chords and Arcs

MISCELLANEOUS EXERCISE 11

(i) (c) (i) (b) @iv) (b)
(vi) (¢) (vii) (b) (viii) (c)
(x) ()

Unit 12: Angle in a Segment of a Circle

MISCELLANEOUS EXERCISE 12

(i) (d) (i) (a) @iv) (o)
(vi) (d) (vii) (d) (viii) (b)
x) (o)



Unit 13: Practical Geometry - Circles

X
Two equal parts of the arc AC are
AB and BC
2
K0y,
3 (i) »

EXERCISE 13.1

(i)

(i)

X

Four equal parts of the arc AC are
AD, DB, BE , EC

Mathematics 10



EXERCISE 13.2
1. radius = 3.3 cm. 2. 1 cm (approximately) 3. 2.3 cm

MISCELLANEOUS EXERCISE 13
1. MCQ's
(1) () (i) (b) (i) (@) (iv) (@ () (b)
(vi) () (vii) (a) (viii) () (ix) (@) (x) (©)
(xi) (@)  (xii) (a) (xiii) (b) iv) () &xv) (0
(xvi) (b)  (xvii) (b)) (xviii)  (c)

. ... 360° i
2. (i) 24 cm (iii) " (iv) 25 cm
3. Fill in the Blanks:
i circumference ii. boundary iii. chord
iv. centre V. coincide vi. less
Vii. greater viii.  one iX. non-collinear
X. right Xi. contact, centres Xil. collinear
Xiil.  two Xiv. perpendicular XV. tangent
XVi. two Xvii.  centre Xviii. equal
xix.  equal XX. equilateral xxi.  concentric
Xxii.  incentre xxiii. circumcentre xxiv. in-radius

xxv.  circum-radius

Answers @



SYMBOLS AND ABBREVIATIONS |

Adj. A Adjoint of A . Since or because
A’ Transpose of A det A or |Al |determinant of A
A Inverse of A T pi

Add Addition, adding ax 10" form for scientific notation
log x Logarithm of x to the base a pt Point

i ieota, no. whose square is —1 W.I.t. With respect to
+ve positive —ve Negative

€ Belongs to ¢ does not belong to
v For all = Equal to

3 There exist * Not equal to

Alt Alternate Therefore

Constr Construction ie. that is

Cor Corollary = implies that
Corresp  |Corresponding ° degree

Def Definition / minute or foot

Ext Exterior V4 second or inch

Fig Figure cm centimeter

Iff If and only if = nearly equal to
Iso Isosceles = is congruent to
Mid pt. Middle point YIS correspondence
perp Perpendicular A Triangles

prob. Problem > greater than or equal to
Quad. Quadrilateral < less than or equal to
Rect Rectangle [rt right angle

Rhmb Rhombus A Triangle

Sq Square 1L is perpendicular to
st line Straight line Il is parallel to

Th Theorem Il gm parallelogram
Trap Trapezium (O] circle

vert opp. |Vertically opposite o circumference
QED Quod Erat Demonstramdum AB arc AB

0 Theta (angle measure) AB line segment AB.
() Omega D phi

Mathematics 10
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0/1/2(3|4,5(6|7|8(9|123|456|789
0000(0043|0086(0128|0170 4 9 13 (1721 26 |30 34 38

10 0212(0253(0294{0334(0374| 4 8 12 (1620 24 |28 32 36
11 |0414]0453/0492/0531/0569 4 8 121519 23 (27 3135
0607(0645/0682/0719|0755 4 7 111519 22 |26 30 33

12 |0792(0828[0864(0899(0934 3 7 111418 21|25 28 32
0969/1004{1038/1072[1106| 3 7 10 (1417 20 [24 27 31

13 [11391173(1206[1239(1271 3 7 10 [1316 20 |23 26 30
1303|1335|1367|1399(1430| 3 7 10 |1316 19 |22 25 29

14 |1461[1492|1523[1553/1584 36 9(1215 19 |22 25 28
1614(1644/1673(1703/1732) 3 6 9 (1215 17 |20 23 26

15 [1761(1790(1818[1847(1875 36 91114 16 |20 23 26
1903|1931/1959\1987/2014| 3 6 8 |1114 17 |19 22 25

16 [2041(2068[2095[21222148 35 81114 17 (19 2224
2175/2201|2227|2253(2279] 3 5 8 (1013 16 (18 21 23

17 [2304(2330[2355(2380(2405 3 5 8(1013 15 |18 20 23
2430/2455|2480(2504{2529| 2 5 7 (1012 15 [17 20 22

18 [2553(2577|2601(2625(2648 25 7(912 14 (16 19 21
2672/2695|2718|2742|2765 2 5 7|9 11 14 [16 18 21

19 |2788(2810[2833(2856(2878 2 4 7|9 11 13|16 18 20
2900/2923|2945/2967|2989] 2 4 6 (8 11 13 (15 17 19

20 (3010({3032|3054|3075|3096|3118{3139|3160|3181(3201 2 4 6 (8 1113 (151719
21 |3222(3243(3263|3284(3304(3324|3345(3365|3385|3404| 2 4 6 (8 10 12|14 1618
22 (3424(3444|3464|3483|3502|3522|3541|3560(3579(3598) 2 4 6 |8 10 12 (14 1517
23 |3617(3636(3655|3674(3692(3711|3729(3747(3766|3785| 2 4 6 |7 9 11 |13 1517
24 |3802(3820(3838|3856(3874(3892|3909(3927(3945|3962| 2 4 5 |7 9 11 |12 14 16
25 |3979(3997(4014/4031(4048(4065/4082(4099(4116|4133| 2 3 5|7 9 10 |1214 15
26 |4150(4166|4183|4200(4216(4232|4249|4265|4281|4298 2 3 5 (7 8 10 |11 1315
27 |4314(4330(4346|4362(4378(4393/4409(4425(4440|14456| 2 3 5|6 8 9 |1113 14
28 |4472(4487|4502|4518|4533(4548/4564(4579|4594(4609| 2 3 5 (6 8 9 (1112 14
29 (4624(4639|4654|4669|4683|4698/47134728|4742(4757| 1 3 4 (6 7 9 (10 12 13
30 |4771(4786(4800|4814(4829(4843|4857|4871(4886/49000 1 3 4 |6 7 9 |10 11 13
31 |4914(4928(4942|4955(4969(498349975011(5024/5038| 1 3 4 |6 7 8 |10 11 12
32 |5051(5065/5079|5092|5105(5119(5132|5145|5159(5172| 1 3 4 |5 7 8 (9 11 12
33 |5185(5198(5211|5224 (5237 (52505263 |5276(5289|5302| 1 3 4 |5 6 8 |9 10 12
34 |5315(5328(5340|5353(5366|5378|5391|5403|5416/5428/ 1 3 4 (5 6 8 |9 10 11
35 |5441|5453|5465|5478(5490|5502|5514 |5527|5539|5551 1 2 4 (5 6 7 |9 10 11
36 [5563(5575|5587|5599|5611|56235635|5647|5658(5670( 1 2 4 (5 6 7 8 10 11
37 (5682(5694|5705|5717|5729|5740(5752|5763|5775(5786| 1 2 3 (5 6 7 8 910
38 |5798(5809(5821|5832(5843(5855|5866|5877(5888/5899| 1 2 3 |5 6 7 |8 9 10
39 |5911(5922(5933|5944(5955(5966|5977 |5988(5999/60100 1 2 3 |4 57 |8 910
40 (6021(6031/6042|6053/6064/6075/6085|6096|6107(6117| 1 2 3 (4 5 6 8 910
41 (6128(6138|6149|6160/6170/6180/6191/6201(6212(6222( 1 2 3 (4 5 6 7 8 9
42 16232(6243(6253|6263(6274(62846294 (6304(6314/6325| 1 2 3 |4 5 6 7 8 9
43 (6335(6345|6355|6365/6375|6385(6395|6405(6415(6425( 1 2 3 (4 5 6 7 8 9
44 16435/6444(6454/6464/6474|6484/6493(6503(6513|6522 1 2 3 |4 5 6 7 8 9
45 |6532(6542(6551|6561(6571(6580/6590(6599(6609/6618| 1 2 3 |4 56 |7 8 9
46 |6628(6637(6646|6656/6665(6675/6684 (6693(6702/6712| 1 2 3 |4 56 |7 7 8
47 (6721(6730|6739|6749|6758|67676776|6785(6794(6803| 1 2 3 (4 5 5 6 7 8
48 (6812(6821/6830|6839/6848|685768666875(6884(6893| 1 2 3 (4 4 5 6 7 8
49 16902(6911(6920/6928|6937 |6946|6955(6964(6972|/6981 1 2 3 |4 4 5 6 7 8
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.77 |5888(5902|5916|5929|5943|5957| 5970|5984/ 5998|6012 10 1112
.78 |6026(6039|6053|6067|6081|6095|6109|6124|6138|6152 10 1113
.79 |61666180|6194|6209|6223|6237|6252|6266/6281|6295 10 1113
.80 |6310|6324|6339|6353|6368|6383|6397|6412| 6427|6442 101213
.81 |6457|6471|6486|6501|6516|6531|6546/6561|6577|6592 111214
.82 |6607|6622|6637|6653|6668|6683|6699|6714|67306745 111214
.83 |6761|6776|6792|6808|6823|6839|6855/6871|6887|6902 111314
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.96 |9120|9141|9162|9183|9204|9226|9247|9268|9290/9311 13 (151719
.97 |9333(9354|9376|9397|9419|9441| 9462|9484/ 9506|9528 13 (151720
.98 |9550|9572|9594|9616|9638|9661|9683|9705|9727|9750 13 |16 1820
.99 (9772/9795|9817|9840|9863|9886|9908|9931/9954|9977 14 (161820
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Quadratic
equation:

Second degree
equation

General or
standard form

Reciprocal
equation:

Exponential
equations:

Discriminant:

Cube roots:

Complex cube
roots:

Properties of
cube roots of
unity

Roots of the
quadratic
equation:

Glossary

Radical equation:

GLOSSARY
| Unit 1

An equation which contains the square of the unknown (variable)
quantity, but no higher power, is called a quadratic equation or an
equation of the second degree.

A second degree equation in one variable x, is ax? + bx + ¢ = 0,

a # 0 and a, b, c are constants is called the general or standard form of
a quadratic equation. Where a is the co-efficient of x2, b is the
co-efficient of x and constant term is c.

An equation is said to be a reciprocal equation, if it remains

1
unchanged, when x is replaced by T

In exponential equations variable occurs in exponent.

An equation involving expression under the radical sign is called a

radical equation.

The expression “b% — 4ac” of the quadratic expression ax? + bx + ¢ is
called Discriminant.

The cube roots of unity are 1, » and w?.

Complex cube roots of unity are ® and ®2.

(a) The product of three cube roots of unity is one. i.e.,
(1) (0) (@) =w’=1

(b) Each of the complex cube roots of unity is reciprocal of the
other.

(©) Each of the complex cube roots of unity is the square of the
other.

(d) The sum of all the cube roots of unity is zero, i.e.,

l+0+0*=0

The roots of the quadratic equation ax?+ bx+c=0, a#0 are

_ 2!2_ _ _2!2_
b+ b* — 4ac and f= b b? —4ac

o= 2a 2a
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Sum and the
product:

Symmetric
functions:

Formation of a
quadratic
equation as:

Synthetic
division:

Simultaneous
equations:

Ratio:

Proportion:

Direct variation:

Inverse variation

Theorem on
proportions:

The sum and the product of the roots of a quadratic equation

a+ﬁ=%b and off = 2

Symmetric functions of the roots of a quadratic equation are those
functions in which all the roots involved are alike, so that the value of
the expression remains unaltered, when roots are interchanged.

x2 — (sum of the roots) x + product of the roots =0

= x—(a+pB)x+aff=0

Synthetic division is the process of finding the quotient and remainder,
when a polynomial is divided by a linear polynomial.

A system of equations f (x, y) = 0 and g (x, y) = 0 having a common
solution is called a system of simultaneous equations.

A relation between two quantities of the same kind is called ratio.

A proportion is a statement, which is expressed as equivalence of two
ratios.

If two ratios a : b and ¢ : d are equal, then we can write @ : b = C : d
A A

If two quantities are related in such a way that when one changes in any
ratio so does the other is called direct variation.

If two quantities are related in such a way that when one quantity
increases, the other decreases is called inverse variation.

(D) Theorem of Invertendo
Ifa:b=c:dthenb:a=d:c
2) Theorem of Alternando
Ifa:b=c:d, thena:c=b:d
3) Theorem of Componendo
If a:b=c:d, then
0)) a+b:b=c+d:d
(i) a:a+b=c:c+d
4) Theorem of Dividendo
If a:b=c:d, then
Mathematics 10



Joint variation:

K-Method:

Fraction:

Equation:
Identity:

Rational
fractional:

Proper rational
fraction:

Improper
fraction:

Glossary

Partial fractions:

) a—-b:b=c—-d:d

(ii) a:a-b=c:c-d

&) Theorem of Componendo-dividendo
If a:b=c:d, then
a+b:a-b=c+d:c—d

A combination of direct and inverse variations of one or more than one
variables forms joint variation.

a C
N
Then k=3=5 or  a=kb and c=kd
It %:2:?:1( then a=bk,c=dkande=fk

A fraction is an indicated quotient of two numbers or algebraic
expressions.

An equation is equality between two expressions.
An identity is an equation which is satisfied by all the values of the
variables involved.
Ni

An expression of the form ﬁ(% , where N(x) and D(x) are polynomials
in x with real coefficient, is called a rational fractional. Every
fractional expression can be expressed as a quotient of two
polynomials.

Ni
A rational fraction #()% , with D(x) # 0 is called a proper rational
fraction if degree of the polynomial N(x), in the numerator is less than
the degree of the polynomial D(x), in the denominator.

N
A rational fraction #(% , with D(x) # 0 is called an improper fraction it

degree of the polynomial N(x) in the numerator is greater or equal to the
degree of the polynomial D(x) in the denominator.

N

Decomposition of resultant fraction D) when

D



Set

Union of sets

Intersection of
sets

Difference of sets:

Compliment:

Closed figures:

Specific order:

Ordered pairs:

Binary Relation:

Function:

First elements &

second elements:

Into function

(a)

denominator D(x) consists of non-repeated linear factors.

(b) denominator D(x) consists of repeated linear factors.

(c) denominator D(x) contains non-repeated irreducible quadratic
factor.

(d) denominator D(x) has repeated quadratic factor.

A set is the well defined collection of distinct objects with some
common properties.

Union of two sets A and B denoted by A U B is the set containing
elements which either belong to A or to B or to both.

Intersection of two sets A and B denoted by A N B is the set of common
elements of both A and B. In symbols A " B={x:V xe€ A and x € B}.

The set difference of B and A denoted by B — A is the set of all those
elements of B but do not belonging to A.

Complement of a set A w.r.t. universal set U is denoted by A = A’
= U — A contains all those elements of U which do not belong to A.

British mathematician John Venn (1834 — 1923) introduced rectangle
for a universal set U and its subsets A and B as closed figures inside this
rectangle.

An ordered pair of elements is written according to a specific order for
which the order of elements is strictly maintained.

Cartesian product of two non empty sets A and B denoted by A X B
consists of all ordered pairs (x, y) such that V.xe Aand V y € B.

Suppose A and B are two non empty sets then relation f: A — B is
called a function if (i) Dom f=set A (ii) every x € A appears in one and
only ordered pair € f.

Suppose A and B are two non empty sets then relation f: A — B is
called a function if (i) Dom f=set A (ii) V x € A we can associate some
unique image element y=f(x) € B.

Dom f'is the set consisting of all first elements of each ordered pair € f
and range f'is the set consisting of all second elements of each ordered

pair € f.

A function f: A — B is called an into function if at least one element in
B is not an image of some element of set A i.e., Range of f C set B.
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Onto function

One-one
function:

Bijective
function:

Constant
function:

Frequency
distribution:

Class limits

Histogram

Arithmetic mean

Deviation

Geometric mean

Glossary

Identity function:

A function f: A — B is called an onto function if every element of set B
is an image of at least one element of set A i.e., Range of f = set B.

A function f: A — B is called one-one function if all distinct elements
of A have distinct images in B

A rule f: A — B is called bijective function iff function fis one-one and
onto.

A function f: A — B is called a constant function if V x € A. There is
an element C € B such that f(x) = C.

A function f: A — A is called Identity function if V x € A we can
associate some unique image element x itself such that

f(x)=x VxeA.

A frequency distribution is a tabular arrangement classifying data into
different groups.

(a) The minimum and the maximum values defined for a class or
group are called class limits.

(b) The real class limits of a class is called class boundary. 1t is
obtained by adding two successive class limits and dividing the
sum by 2.

(©) For a given class the average of that class obtained by dividing

the sum of upper and lower class limit by 2, is called the
midpoint or class mark of that class.

(d) The total of frequency up to an upper class limit or boundary is
called the cumulative frequency.

A Histogram is a graph of adjacent rectangles constructed on XY-plane.

Arithmetic mean is a measure that determines a value of the variable
under study by dividing the sum of all values of the variable by their
number.

A Deviation is defined as ‘a difference of any value of the variable
from any constant’. D; = x; — A.

Geometric mean of a variable X is the n™ positive root of the product of
the X, X, X55ceennen , X, observations. In symbols we write,



Harmonic mean  Harmonic mean refers to the value obtained by reciprocating the mean
of the reciprocal of X, Xx,, X;,......... , X, observations.

Mode: Mode is defined as the most frequent occurring observation of the
variable or data.

Mode=L+Mxh

2fw=hi=1s
Median: Median is the measure which determines the middlemost observation in
. h|n
a data set. Median = L+ 7 5 c
Dispersion: Statistically, Dispersion means the spread or scatterness of observations in
a data set.
Range: Range measures the extent of variation between two extreme

observations of a data set. It is given by the formula:
Range=X_,, - X..,.=X, — X,

Variance: Variance is defined as the mean of the squared deviations of x;
(i=1,2,.....,, n) observations from their arithmetic mean. In symbols,

n 2

2% yxxy

Variance of X = Var (X) = §2 =-=! =

n n
Standard Standard deviation is defined as the positive square root of mean of the
deviation: squared deviations of X; (i = 1, 2, ....., n) observations from their

arithmetic mean. In symbols we write,

Standard Deviation of X = S.D (X) =

Degree: If we divide the circumference of a circle into 360 equal arcs. Then the
angle subtended at the centre of the circle by one arc is called one

degree and is denoted by 1°.

Radian: The angle subtended at the centre of the circle by an arc, whose length
is equal to the radius of the circle, is called one radian.
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Relationship
between radian
and degree
measure:

Relation between
angle, arc length
and radius:

sector:

Coterminal
angle:

Quadrantal
angle:

Standard
position:

Trigonometric

ratios:

Trigonometric
Identities:

Projection:

Zero dimension:

Obtuse angle:
Right angle

Acute:

Glossary

Area of a circular

o _T . - . . 180\° _
1" = 180 radian , = 0.0175 radian and 1 radian = T , ~57.295

degrees.

Relation between central angle and arc length of a circle: [/ = r

. 1
Area of a circular sector, A = 2 20
Two or more than two angles with the same initial and terminal sides
are called coterminal angles.

An angle is called a quadrantal angle, if its terminal side lies on the x-
axis or y-axis.

A general angle is said to be in standard position if its vertex is at the
origin and its initial side is directed along the positive direction of the x-
axis of a rectangular coordinate system.

There are six fundamental trigonometric ratios (functions) called sine,
cosine, tangent, cotangent, secant and cosecant.

cos26 + sin?8 = 1

(b) sec2@ — tan28 =1

Trigonometric Identities(a)

(¢) cosec2@—cot?@ =1

The projection of a given point on a line is the foot of L drawn from the
point on that line. However the projection of given point P on a line AB
is the point P itself.

The projection of a finite line on an other line is the portion of the latter
intercepted between the projection of ends of the given finite line.
However projection of a vertical line on an other line is the join of these
two intersecting lines which is of zero dimension.

An angle which is greater than 90° is called obtuse angle.
An angle which is equal to 90° is called right angle.

An angle which is less than 90° is called acute angle.

D




Circle: A circle is the locus of a moving point P in a plane which is equidistant

from some fixed point N. The fixed paint N not lying on the circle is
called the centre and the constant distance PN is called its radius.

Circumference: 2nr is the circumference of a circle with radius r.
Circular area: 1tr? is the circular area of a circle of radius r.

Collinear points:  The points lying on the same line are collinear points otherwise they
are non-collinear points.

Circumcirlce: The circle passing through the vertices of a triangle is called its
circumcirlce where L bisectors of sides of the triangle provides the

centre.

Secant: A secant is a st line which cuts the circumference of a circle in two
distinct points.

Tangent: A tangent to a circle is the St line which meets the circumference at one
point only and being produced does not cut it at all. The point of
tangency is also known as the point of contact. AB is the tangent line to
the circle C.

Length of a The length of a tangent to a circle is measured from the given point to
tangent: the point of contact.
Sector: The sector of a circle is an area bounded by any two radii and the arc

intercepted between them.
Central angle: A central angle is subtended by two radii at the centre of the circle.

Circumangle: A circumangle is subtended between any two chords of a circle, having
common point on its circumference.

Chord: The join of any two points on the circumference of the circle is called
its chord.

Cyclic A quadrilateral is called cyclic when a circle can be drawn through its

quadrilateral: four vertices.

In-centre: In-centre of a triangle is the centre of a circle inscribed in a triangle.
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Circle:

Radius:

Perimeter:

circumference

Diameter:

Arc:

Triangle:

Polygon:

Vertices:

Locus:

Circumscribed
circle:

Escribed circle:

Circum circle:

In circle:

Glossary

Regular polygon:

A "circle" is locus of a moving point in a plane which is equidistant
from a fixed point. The fixed point is called "centre” of the circle.

The distance from the centre of the circle to any point on the circle is
called radius of the circle.

The perimeter of a closed geometric figure is the sum of its sides.

The perimeter or length of the boundary of the circle is called the
circumference.

A chord which passes through the centre of the circle is called diameter
of the circle.

A part of circumference of a circle is called an arc.

A plane figure formed by three straight edges as its sides is called a
triangle.

A plane figure with three or more straight edges as its sides is called a
polygon.

A figure bounded by equal straight lines which has all its angles equal
is called a regular polygon.

The corners of a polygon are called its vertices.

The path of an object moving according to some rule, is the locus of the
object.

If a circle passes through all the vertices of a polygon the circle is said
to be circumscribed about the polygon and the polygon is said to be
inscribed in the circle.

If a circle touches one side of a triangle externally and the other two
produced sides internally, is called escribed circle.

The circle passing through the vertices of triangle ABC is known as
circum circle, its radius as circum radius and centre as circum centre.

A circle which touches the three sides of a triangle internally is known
as in-circle its radius as in-radius and centre as in-centre.



A
Alternando

Angle of depression
Angle of elevation
Angle in standard position
Antecedent

Appolonius theorem
Appropriate problems

Arc

Area of a circular sector
Arithmetic mean
Associative property

B
Basic Statistics
Bijective Function
Binary relation
Biquadratic

C

Cartesian product
Central angle
Central tendency
Central value

Chord

Circle
Circum-centre
Circumcirlce
Circumference
Circumscribed circle
Class boundaries
Class limits
Co-domain
Co-efficients
Common tangent
Commutative property
Complement of set

58
166
166
154

50
175

24
180
151
118

89

107
101
99
38

98
206
118
118
180
180
224
180
180
224
110
110

99

2,30,79
232

88

87

Completing square
Complex cube roots
Componendo

Componendo-dividendo

Concentrric circles
Convergent lines
Congruent
Congruent circles
Consequent
Continued proportion
Correspondence
Corresponding arcs
Coterminal angles
Cube roots of unity
Cubic equation
Cumulative frequency
D
Data
De Morgan's laws
Degree
Denominator
Depressed equation
Diameter
Difference of sets
Direct method
Direct variation
Discriminant
Dispersion
Distributive property
Dividend
Dividendo
Domain

E-centre
E-circle
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59
60
180
236
185
203
50
58
101
204
153
22
37
110,115

108
90
146
75
37
183
86
118
53
19
136
89
36
60
99

226
226



Equidistant
Equilateral triangle
Equal circles
E-radii
Escribed circle
Exponential equations
Externally
Extraneous roots
Extremes

F
Factorization
Formation of quadratic equation
Fourth proportional
Fraction
Frequency distribution
Frequency polygon
Function

G
General angle
Geometric mean
Grouped data

Harmonic mean
Hexagon
Histograms

Identity

Imaginary
Improper fraction
Indirect methods
In-centre

Initial side
Injective function
Inscribed circle
Internally
Intersecting circles
Intersection of sets

Index

184
226
232
226
225

10
195

12,13

52

32
57
75
108
114
99

153
118
120

118
227
111

77
19
75
119
225
146
101
215
196
234
86

Inverse variation 55
Invertendo 59
Irrational 19
J, K, L
Joint variation 64
K-method 66
Linear equation 2
Linear factors 2,78
M
Minor sector 180
Major segment 180
Mapping 99
Mean proportion 57
Mean 118
Median 118
Midpoint 110
Minor arc 204
Major arc 204
Minor segment 180
Mode 118
N
Nature of the roots 19
Non collinear points 181
Non-repeated 80
(0]
Obtuse 172
Ordered pairs 39,98
Order 50
P
Partial fractions 74,76
Perfect square 19,20
Perpendicular bisectors 183
Polygon 116,222
Polynomial 35
Product of the roots 26, 28
Projection 176
Proper fraction 75



Proportion

Pure quadratic

Pythagorean theorem
Q

Quadrantal angle

Quadrants

Quadratic expression

Quadratic equations

Quadratic formula

Quadrilateral

Quartiles

Quotient

Radial segment
Radian

Radical equation
Radius

Range

Ratio

Rational fraction
Reciprocal equations
Reciprocal identities
Reducible
Remainder
Resultant fraction
Right bisectors
Roots

Secant

Second degree
Sector of a circle
Semi-circle

Sets
Sexagesimal

Simultaneous equations

Solution

Properties of cube roots of unity

51
2,3
157

155
155
19

215
118
36

180
148

12

180
99,147
50

75

156
8
36
76
222
19

190

2
150,180
214
86,89
146

39

2

Square roots
Standard deviation
Standard form
Standard position
Sum of the roots
Supplementary
Surjective function
Symmetric functions
Synthetic division
System of equations
T
Tally marks
Tangent
Tangent to a circle
Terminal side
Third proportional
Touching circles
Transverse
Trigonometric identities
Trigonometric ratios
U
Unequal circles
Ungrouped data
Union of sets
Units

Variable

Variance

Variations

Venn diagrams
Zeros of polynomial
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154
26,27
215
101
30

35

39

108

229
190,229
146

57

234
233

163

153

233
118
89
50

137
53
94
37
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