Learning Objectives

At the end of this chapter the students will be able to:

- Understand what is Physics.
2. Understand that all physical quantities consist of a numerical magnitude and a unit.

Recall the following base quantities and their units; mass (kg), length (m), time (s),
current (A), temperature (K), luminous intensity (cd) and amount of substance (mol).

Describe and use base units, supplementary units, and derived units.
5. Understand and use the scientific notation.

6. Use the standard prefixes and their symbbls to indicate decimal sub-multiples or
muitipies to both base and derived units. :

7. Understand and use the conventions for indicating units.

. Understand the distinction between systematic errors and random_.errors.
9. Understand and use the significant figures.
10. Understand the distinction between precision and accuracy.

1. Assess the uncertainty in a derived quantity by simple addition of actual, fractional
or percentage uncertainties.

12. Quote answers with correct scientific notation, number of significant figures and
units in all numerical and practical work.

13 Use dimensionality to check the homogeneity of physical equations.
14. Derive formulae in simple cases using dimensions.

= Versince man has started to observe, think and reason he has been wondering about

the world around him. He tried to find ways to organize the disorder prevailing in the observed
facts about the natural phenomena and material things in an orderly manner. His attempts
resulted in the birth of a single discipline of science, called natural philosophy. There was a
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Interdisciplinary areas
of Physics

Astrophysics
Biophysics

Chemical physics
Engineering physics
Geophysics

Medical physics
Physical oceanography
Physics of music

huge increase in the volume of scientific knowledge up till the
beginning of nineteenth century and it was found necessary
to classify the study of nature into two branches, the
biological sciences which deal with living things and physical
sciences which concern with non-living things. Physics is an
important and basic part of physical sciences besides its
other disciplines such as chemistry, astronomy, geology etc.
Physics is an experimental science and the scientific method
emphasizes the need of accurate measurement of various
measurable features of different phenomena or of man made
objects. This chapter emphasizes the need of thorough
understanding and practice of measuring techniques and
recording skills.

1.1 INTRODUCTION TO PHYSICS

At the present time, there are three main frontiers of
fundamental science. First, the world of the extremely large,
the universe itself, Radio telescopes now gather information
from the far side of the universe and have recently detected,
as radio waves, the “firelight” of the big bang which probably
started off the expanding universe nearly 20 billion years
ago. Second, the world of the extremely small, that of the
particles such as, electrons, protons, neutrons, mesons and
others. The third frontier is the world of complex matter. It is
also the World of “middle-sized” things, from molecules at
one extreme to the Earth at the other. This is all
fundamental physics, which is the heart of science.

But what is physics? According to one definition, physics
deals with the study of matter and energy and the
relationship between them. The study of physics involves
investigating such things as the laws of motion, the structure
of space and time, the nature and type of forces that hoid
different materials together, the interaction between different
particles, the interaction of electromagnetic radiation with
matter and so on.

By the end of 19" century many physicists started believing
that every thing about physics has been discovered.
However, about the beginning of the twentieth century many
new experimental facts revealed that the laws formulated by
the previous investigators need maodifications. Further
researches gave birth to many new disciplines in physics
such as nuclear physics which deals with atomic nuclei,
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particle physics which is concerned with the ultimate particles
of which the matter is composed, relativistic mechanics which
deals with velocities approaching that of light and solid state
physics which is concerned with the structure and properties
of solids, but this list is by no means exhaustive.

Physics is most fundamental of all sciences and provides
other branches of science, basic principles and fundamental
laws. This overlapping of physics and other fields gave birth
to new branches such as physical chemistry, biophysics,
astrophysics, health physics etc. Physics also plays an
important role in the development of technology and
engineering.

Science and technology are a potent force for change in
the outlook of mankind. The information media and fast
means of communications have brought all parts of the
world in close contact with one another. Events in one part
of the world immediately reverberate round the globe.

We are living in the age of information technology. The
computer networks are products of chips developed from
the basic ideas of physics. The chips are made. of silicon.
Silicon can be obtained from sand. Itis upto us whether we
make a sandcastle or a computer out of it.

1.2 PHYSICAL QUANTITIES

The foundation of physics rests upon physical quantities in
terms of which the laws of physics are expressed.
Therefore, these quantities have to be measured accurately.
Among these are mass, length, time, velocity, force, density,
temperature, electric current, and numerous others.

Physical quantities are often divided into two categories:
base quantities and derived quantities. Derived quantities
are those whose definitions are based on other physical
quantities. Velocity, acceleration and force etc. are usually
viewed as derived quantities. Base quantities are not
defined in terms of other physical quantities. The base
quantities are the minimum number of those physical
guantities in terms of which other physical quantities can
be defined. Typical examples of base quantities are length,
mass and time.
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The measurement of a base quantity involves two steps: first,
the choice of a standard, and second, the establishment of a
procedure for comparing the quantity to be measured with
the standard so that a number and a unit are determined as
the measure of that quantity.

An ideal standard has two principal characteristics: it is
accessible and it is invariable. These two requirements are
often incompatible and a compromise has to be made
between them.

In 1960, an international committee agreed on a sst of
definitions and standard to describe the physical

quantities. The system that was established is called the
System International (SI).

Due to the simplicity and convenience with which the units
in this system are amenable to arithmetical manipulation, it
is in universal use by the world's scientific community and
by most nations. The system international (SI) is built up
from three kinds of units: base units, supplementary units
and derived units.

There are seven base units for various physical quantities
namely: length, mass, time, temperature, electric current,
luminous intensity and amount of a substance (with special
reference to the number of particles).

The names of base units for these physical quantities
together with symbols are listed in Table 1.1. Their
standard definitions are given in the Appendix 1.

Supplementary Units

The General Conference on Weights and Measures has not
yet classified certain units of the S| under either base units
or derived units. These S| units are called supplementary
units. For the time being this class contains only two units of
purely geometrical quantities, which are plane angle and the
solid angle (Table1.2).



Radian °

The radian is the plane angle between two radii of a circle
which cut off on the circumference an arc, equal in length
to the radius, as shown in Fig. 1.1 (a).

Steradian

The steradian is the solid angle (three-dimensional angle)
subtended at the centre of a sphere by an area of its surface
equal to the square of radius of the sphere. (Fig. 1.1 b).

Derived Units

S| units for measuring all other physical quantities are
derived from the base and supplementary units. Some of
the derived units are given in Table. 1.3.

Physical

Force
Work
Power
Electric s :
charge: ¥ kis Saasse ia‘.:,'c: AP, &

Numbers are expressed in standard form called scientific
notation, which employs powers of ten. The internationally
accepted practice is that there should be only one non-
zero digit left of decnmal Thus, the number 134.7 should
be written as 1.347 x 10” and 0.0023 should be expressed
as 2.3x 107

Conventions for Indicating Units

Use of S| units requires special care, more particularly in
writing prefixes. (

Following points should be kept in mind while using units.

(i) Full name of the unit does not begin with a capital
letter even if named after a scientist e.g.,newton.

Fig. 1.1(a)

Fig. 1.1(b)



Table 1.4

Some Prefixes for Powers of Ten
Factor Prefix Symbol
10 ' atto a
10" fernto f
10" pico p
10° nano “n
10° micro "
10° milli m
10* centi c
10" deci d
10" deca _ da
10° kilo k
1$ mega M

1 i G
10" ?::  §
10" " peta P
10" exa E

The symbol of unit named after a scientist has
initial capital letter such as N for newton.

The prefix should be written before the unit without
any space, such as 1 x 10 m is written as 1 mm.
Standard prefixes are given in table 1.4.

A combination of base units is written each with
one space apart. For example, newton metre is
written as N m.

Compound prefixes are not allowed. For example,
1upF may be written as 1pF.

A number such as 5.0 x 10* cm may be expressed
in scientific notation as 5.0 x 102 m.

When a multiple of a base unit is raised to a power,
the power applies to the whole multiple and not the
base unit alone. Thus, 1 km? = 1 (km)? = 1 x 10° m2.

Measurement in practical work should be recorded
immediately in the most convenient unit, e.g.,
micrometer screw gauge measurement in mm, and
the mass of calorimeter in grams (g). But before
calculation for the result, all measurements must be
converted to the appropriate S| base units.

1.4 ERRORS AND UNCERTAINTIES

All physical measurements are uncertain or imprecise to
some extent. It is very difficult to eliminate all possible errors
or uncertainties in a measurement. The error may occur due
to- negligence or inexperience of a person (2) the fauky
apparatus (! inappropriate method or technique. The
uncertainty may occur due to inadequacy or limitation of an
instrument, natural variations of the object being measured
or natural imperfections of a person’s senses. However, the
uncertainty is also usually described as an error in a
measurement. There are two major types of errors.

(i) Random error \Il} Systematic error

Random error is said to occur when repeated
measurements of the quantity, give different values under



the same conditions. It is due to some unknown causes.
Repeating the measurement several times and taking an
average can reduce the'effect of random errors.

Systematic error refers ‘to an effect that influences all
measurements of a particular quantity equally. It produces
a consistent difference in readings. It occurs to some
definite rule. It may occur due to zero error of instruments,
poor calibration of instruments or incorrect markings etc.
Systematic error can be reduced by comparing the
instruments with another which is known to be more
accurate. Thus for systematic error, a correction factor can
be applied..

1.5 SIGNIFICANT FIGURES

As stated earlier physics is based on measurements. But
unfortunately whenever a physical quantity is measured,
there is inevitably some uncertainty about its determined
value. This uncertainty may be due to a number of
reasons. One reason is the type of instrument, being used.
We know that every measuring instrument is calibrated to
a certain smallest division and this fact put a limit to the
degree of accuracy which may be achieved while
measuring with it. Suppose that we want to measure the
length of a straight line with the help of a metre rod
calibrated in millimetres. Let the end point of the line lies
between 10.3 and 10.4 cm marks. By convention, if the end
of the line does not touch or cross the midpoint of the
smallest division, the reading is confined to the previous
division. In case the end of the line seems to be touching
or have crossed the midpoint, the reading is extended to
the next division.

By applying the above rule the position of the edge of a line
recorded as 12.7 cm with the help of a metre rod calibrated
in milimetres may lie between 12.65 cm and 12.75 cm.
Thus in this example the maximum uncertainty is + 0.05 cm.
It is, in fact, equivalent to an uncertainty of 0.1 cm equal to
the least count of the instrument divided into two parts, half
above and half below the recorded reading.

The uncertainty or accuracy in the value of a measured
quantity can be indicated conveniently by using significant
figures. The recorded value of the length of the straight line

Interval (s)

Age of the universe 5x10"7
Age of the Earth tax1o”
One year 3.9x10’
Oan ey 8.6x10*
Time between ¥
normal heartbeats 8x10
Period of audible 3
sound waves 1x10°
Period of typical
radio Wiwetysp'ca 1x10°
of an atom in a A3
solid 1x10
Period of visible ’
light waves 2x10™°

Approximate Values of Some

Time Intervals



Interesting Information
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i.e. 12.7 cm coﬁtains three digits (1, 2, 7) out of which two
digits (1 and 2) are accurately known while the third digit
i.e. 7 is a doubtful one. As a rule:

In other words, a significant figure is the one which is
known to be reasonably reliable. If the above mentionad
measurement is taken by a better measuring instrument
which is exact upto a hundredth of a centimetre, it would
have been recorded as 12.70 em. In this case, the number
of significant figures is four. Thus, we can say that as we
improve the quality of our measuring instrument and
techniques, we extend the measured result to more and
more significant figures and correspondingly improve the
experimental accuracy of the result. While calculating a
result from the measurements, it is important to give due
attention to significant figures and we must know the
following rules in deciding how many significant figures
are to be retained in the final result.

(i) All digits 1,2,3,4,5,6,7,8,9 are significant. However,
Zeros may or may not be significant. In case of
zeros, the following rules may be adopted.

a) A zero between two significant figures is itself
significant.

b) Zeros to the left of significant figures are not
significant. For example, none of the zeros in
0.00467 or 02.59 is significant.

c) Zeros to the right of a significant figure may or
may not be significant. In decimal fraction,
zeros to the right of a significant figure are
significant. For example, all the zeros in 3.570
or 7.4000 are significant. However, in integers
such as 8,000 kg, the number of significant
zeros is determined by the accuracy of the
measuring instrument. If the measuring scale
has a least count of 1 kg then there are four
significant figures written in scientific notation



as 8.000 x 10° kg. If the least count of the scale
is 10 kg, then the number of significant figures
will be 3 written in scientific notation as
8.00 x 10° kg and so on.

d) When a measurement is recorded in scientific
notation or standard form, the figures other than
the powers of ten are significant figures.

For example, a measurement recorded as
8.70 x 10* kg has three significant figures.

(ii) In multiplying or dividing numbers, keep a number
of significant figures in the product or quotient not
more than that contained in the least accurate
factor i.e., the factor containing the least number of
significant figures. For example, the computation of
the following using a calculator, gives

5.348 x102 x3.64 x10* _ 3
4 =1.45768982 x 10

As the factor 3.64 x 10°, the least accurate in the above
calculation has three significant figures, the answer should _
be written to three significant figures only. The other
figures are insignificant and should be deleted. While
deleting the figures, the last significant figure to be retained
is rounded off for which the following rules are followed.

a) If the first digit dropped is less than 5, the last digit
retained should remain unchanged.

b) If the first digit dropped is more than 5, the digit to be
retained is increased by one.

c) If the digit to be dropped is 5, the previous digit which
is to be retained is increased by one if it is odd and
retained as such if it is even. For example, the
following numbers are rounded off to three significant
figures as follows. The digits are deleted one by one.

43.75 isrounded offas = 438
56.8546 is rounded off as 56.8
73.630 is rounded off as 73.6
64.350 is rounded off as 64 .4



For your Information

We use many devices to measure
physical quantities, such as length,
time, and temperature. They all have
some limil of precision.

Following this rule, the correct answer of the computation
given in section (i) is 1.46 x 10°.

(iii) In adding or subtracting numbers, the number of
decimal places retained in the answer should equal
the smallest number of decimal places in any of the
quantities being added or subtracted. In this case,
the number of significant figures is not important. It
is the position of decimal that matters. For example,
suppose we wish to add the following quantities
expressed in metres.

i) 721 2.7543
3.42 4.10
0.003 1.273
75.523 8.1273
Correct answer: 75.5 m 813 m

In case (i) the number 72.1 has the smallest number of
decimal places, thus the answer is rounded off to the same
position which is then 755 m.In case (ii),the number 4.10 has
the smallestnumber of decimal places and hence, the answer
is rounded off to the same decimal positions which is
then 813 m.

1.6 PRECISION AND ACCURACY

In measurements made in physics, the terms precision
and accuracy are frequently used. They should be
distinguished clearly. The ptecision of a measurement is
determined by the instrument or device being used and the
accuracy of a measurement depends on the fractional or
percentage uncertainty in that measurement.

For example, when the length of an object is recorded as
25.5 cm by using a metre rod having smallest division in
millimetre, it is the difference of two readings of the initial
and final positions. The uncertainty in the single reading as
discussed before is taken as + 0.05 cm which is now
doubled and is called absolute uncertainty equal to
*0.1cm. Absolute uncertainty, in fact, is equal to the least
count of the measuring instrument. :

Precision or absolute uncertainty (least count) = + 0.1 cm
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0.1cm

Fractional uncertainty = SE Ao =\0.004
e = _0.1cm U0
Percentage uncertainty & Bom X 100 = 0.4%

Another measurement taken by vernier callipers with least
count as 0.01 cm is recorded as 0.45 cm. It has

Precision or absolute uncertainty (least count) = + 0.01 cm

0.01cm

Fractional uncertainty = e 0.02
i = 0.1cm M :
Percentage uncertainty G 4Bom * 100 = 2.0%

Thus the reading 25.5 cm taken by metre rule is although
less precise but is more accurate having less percentage
uncertainty or error.

; : . ..f."b"' your information

Whereas the reading 0.45 cm taken by vernier callipers  “coour printing uses just four

is more precise but is less accurate. In fact, it is the colours- cyan, magenta. yellow and

relative measurement which is important. The smaller a  black o produce the entire range of
: : e colours. All the colours in this book

physical quantity, the more precise instrument should be e peen made from just these

used. Here the measurement 0.45 cm demands that a  four colours.

more precise instrument, such as micrometre screw

gauge, with least count 0.001cm, should have been

used. Hence, we can conclude that:

A precise measurement is the one which has less
absolute uncertainty and an accurate measurement
is the one which has less fractional or percentage
uncertainty or error.

1.7 ASSESSMENT OF TOTAL
UNCERTAINTY IN THE FINAL RESULT
To assess the total uncertainty or error, it is necessary to
evaluate the likely uncertainties in all the factors involved in

that calculation. The maximum possible uncertainty or
error in the final result can be found as follows. The proofs

of these rules are given in Appendix 2.
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These are not decoration pieces
of glass but are the earliest
known exquisite and sensitive
tharmometers, built by .the
Accademia del Cimento (1657-
1667), in Florence. They contained
alcohol, some times coloured rad
for easier reading.

1. For addition and subtraction

Absolute uncertainties are added: For example, the
distance x'determined by the difference between two
separale position measurements

x1=10.5+ 0.1 cm and x, = 26.8 + 0.1 cm is recorded as

X=X-X,=16.3+0.2cm

2. For muitiplication and division

Percentage uncertainties are added. For example the
maximum possible uncertainty in the value of resistance R
of a conductor determined from the measurements of
potential diflerence V and resulting current flow 7 by using
R = V/iis found as follows:

V=52£01V
I'=0.84 +0.05A :
: 01V - ¥
The %age uncertaintyfor Vis = S5y X 100 = about 2%
The %age uncertainty for / is = %gjg- x 100 = about 6%

Hence total uncertainty in the value of resistance R when V
is divided by 7is 8%. The result is thus quoted as

52V

. R ey R e i 9
R Stk 6.19 VA" = 6.19 ohms with a % age

uncertainty of 8%

that is R=6.2%+ 0.50hms

The result is rounded off to two significant digits because
both V and R have two significant figures and uncertainty,
being an estimate only, is recorded by one significant
figure.

3. For power factor

Multiply the percentage uncertainty by that power. For
example, in the calculation of the volume of a sphere using

12
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3

%age uncertainty in V = 3 x % age uncertainty in radius r. Interesting Information

As uncertainty is multiplied by power factor, it increases the
precision demand of measurement. If the radius of a small
sphere is measured as 2.25 cm by a vernier callipers with
least count 0.01 cm, then

Y=

D

the radius ris recorded as
r=225+0.01cm

Absolute uncertainty = Least count = £ 0.01 cm

D 108 = 045

%age uncertainty inr= T

Total percentage uncertainty in V=3x04 = 1.2%
Thus volume V= g ar®

=_‘3*. x 3.14 x ( 2.25 cm)*

® 3y s seeyei B B EERA.

= 47.689 cm’ with 1.2% uncertainty
Thus the result should be recorded as
V=477 +06cm’

4. For uncertainty in the average value of
many measurements.

.

(i) Find the average value of measured values. :

(i) Find deviation of each measured value from the
average value.

(iii) The mean deviation is the uncertainty in the
average value.

For example, the six readings of the micrometer
screw gauge to measure the diameter of a wire in
mm are

1.20,1.22,1.23,1.19,1.22,1.21.
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Moen to Earth
Sun to Earth
Pluto to Earth

Travel time of light

1 min 20s
8 min 20s
5h 20s

1.20+1.22+1.23+1.19+1.22 +1.21

Then Average = 5

=1.21 mm

The deviation of the readings, which are the difference
without regards to the sign, between each reading and
average value are 0.01, 0.01, 0.02, 0.02, 0.01, 0,

0.01+0.01+0.02 +0.02+0.01+ 0
6

Mean of deviations =

=0.01 mm

Thus, likely uncertainty in the mean diametre 1.21 mm is
0.01 mm recorded as 1.21 + 0.01 mm.

5.. For the uncertainty in a timing experiment
The uncertainty in the time period of a vibrating body is
found by dividing the least count of timing device by the
number of vibrations. For example, the time of 30
vibrations of a simple pendulum recorded by a stopwatch
accurate upto one tenth of a second is 54.6s, the period

_ 546s & £ ; Q 2
T 30 1.82 s with uncertainty 30 0.003 s

Thus, period T is quoted as 7= 1.82 + 0.q03 s

Hence, it is advisable to count large number of swings to
reduce timing uncertainty.

Example 1.1: The length, breadth and thickness of a
sheet are 3.233m, 2.105 m and 1.05 cm respectively.
Calculate the volume of the sheet correct upto the
appropriate significant digits.

Solution: Given length / = 3.233 m
Breadth b= 2.105m
Thickness h = 1.05cm = 1.05x 10° m
Volume V=ixbxh
= 3.233m x 2.105m x 1.05 x 10°m
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=7.14573825x 10° m®

As the factor 1.05 cm has minimum number of significant
figures equal to three, therefore, volume is recorded upto 3
significant figures, hence,V = 7.15x10"m*

Example 1.2: The mass of a metal box measured by a
lever balance is 2.2 kg. Two silver coins of masses 10.01 g
and 10.02 g measured by a beam balance are added to it.
What is now the total mass of the box correct upto the
appropriate precision.

Solution: Total mass when silver coins are added to box
=2.2kg +0.01001 kg + 0.01002 kg
= 2.22003 kg

Since least precise is 2.2 kg, having one decimal place,
hence total mass should be to one decimal place which is
the appropriate precision. Thus the total mass = 2.2 kg.

Example 1.3: The diameter and length of a metal
cylinder measured with the help of vernier callipers of least
count 0.01 cm are 1.22 cm and 5.35 cm. Calculate the
volume V of the cylinder and uncertainty in it.

Solution: Given data is
Diameter d = 1.22 cm with least count 0.01 cm
Length I = 5.35 cm with least count 0.01 cm

Absolute uncertainty in length = 0.01 cm

0.01¢m

%age uncertainty in length = e
535¢m

X100 = 0.2%

Absolute unceriwnty in diameter = 0.01 cm

0.01cm

%age uncertaintyin diameter= S x-100 = 0.8%
2
As volume is V= m:l
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~ total uncertainty in V=2 ( %age uncertaintyin diameter)
+ (%age uncertainty in length)
=2x08+02=1.8%

2
Then V = 3""‘“'222"’ x5.350M _ 62508079 cm® with
; 1.8% uncertainty

Thus V=(6210.1) cm5

Where 6.2 cm® is calculated volume and 0.1cm® is the
uncertainty in it. -

Each base quantity is considered a dimension denoted by
a specific symbol written within square brackets. It stands
for the qualitative nature of the physical quantity. For
example, different quantities such as length, breadth,
diameter, light year which are measured in metre denote
the same dimension and has the dimension of length [ L ].
Similarly the mass and time dimensions are denoted by
[M] and [ T, respectively. Other quantities that we
measure have dimension which are combinations of these
dimensions. For example, speed is measured in metres
per second. This will obviously have the dimensions of
length divided by time. Hence we can write.

Dimension of length

Dimensions of speed =
P Dimension of time

:,[,L_lz M= =1
LSt BT iy

Similarly the dimensions of acceleration are
[al=[L]1[T*)=[LT"]
and that of force are
[Fl=[m]lla]=[M][LT*=[MLT?

Using the method of dimensions called the dimensional
analysis, we can check the correctness of a given formula
or an equation and can also derive it. Dimensional analysis
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makes use of the fact that expression of the dimensions
can be manipulated as algebraic quantities.

{i) Checking the homogerieity of physical equation

In order to check the correctness of an equation, we are to
show that the dimensions of the quantities on both sides of
the equation are the same, irrespective of the form of the
formula. This is called the principle of homogeneity of
dimensions.

Example 1.4: Check the correctness of the relation
v =JFmT where v is the speed of transverse wave on a
stretched string of tension F, length | and mass m. -
Solution:

Dimensions of L.H.S. of the equation=[v] = [LT ]
Dimensions of R.H.S. of the equation = ([F ] x [[] x[m])"?

=(IMLT Ix[L1x[M D2 =272 = (LT

Since the dimensions of both sides of the equation are the
same, equation is dimensionally correct.

i), Deriving a possible formula_

b =3 ¥
The success of this method for deriving a relation for a
physical quantity depends on the correct guessing of
various factors on which the physical quantity depends.

Example 1.5: Derive a relation for the time period of a
simple pendulum (Fig. 1.2) using dimensional analysis. The
various possible factors on which the time period T may
depend are :

i) Length of the pendulum (/)

i) Mass of the bob (m)

iii) Angle 6 which the thread makes with the vertical
iv) Acceleration due to gravity (g)

17



Solution:
The relation for the time period T will be of the form

Tem*xI1®x0°x g°
or T=constant m®/® 9°g® . (1.1)
where we have to find the values of powers a, b, cand d.

Writing the dimensions of both sides we get

171 constan x WP LLF 1L (47 °F

Comparing the dimensions on both sides we have

[T)1=[TT*
(MPP=[MT
(L Pamjlpee
Equating powers on both the sides we get
gn &1
2d =1 or d 3
a=0 and b+d=0
or b=-d=% and 9=[LL71]c=[LOJc=1

Substituting the values of a, b, 8 and d in Eq. 1.1

T=constantx m°x 1% x 1x g%

The device which made the
pendulc i clock practical.
Or T = constant ’—;—

The numerical value of the constant cannot be determined
by dimensional analysis, however, it can be found by
experiments.

Example 1.6: Find the dimensions and hence, the SI
units of coefficient of viscosity 1 in the relation of Stokes’
law for the drag force F for a spherical object of radius r
moving with velocity v givenas F=6 mrv

Solution: 6ris a number having no dimensions. It is not
accounted in dimensional analysis. Then

18



or

[Fl=[nrv]

LA
1=

Substituting the dimensions of F, r, and vin R.H.S.

or

[MLT?)

=

[n]=[M'T7]

Thus, the Sl unit of coefficient of viscosity is kg m™ s

Physics is the study of entire Physical World.

The most basic quantities that can be used to describe the Physical World are
mass, length and time. All other quantities, called derived quantities, can be
described in terms of some combinations of the base quantities.

The internationally adopted system of units used by all the scientists and almost all
the countries of the World is International System (SI) of Units. It consists of seven
base units, two supplementary units and a number of derived units.

Errors due to incorrect design or calibrations of the measuring device are called
systematic errors. Random errors are due to unknown causes and fluctuations in
the quantity being measured.

The accuracy of a measurement is the extent to which systematic error make a
measured value differ from its true value.

The accuracy of a measurement can be indicated by the number of significant
figures, or by a stated uncertainty.

The significant figures or digits in a measured or calculated quantity are those
digits that are known to be reasonably reliable.

The result of multiplication or division has no more significant figures than any factor
in the input data. Round off your calculator result to correct number of digits.

In case of addition or subtraction the precision of the result can be only as great as
the least precise term added or subtracted.

Each basic measurable physical property represented by a specific symbol written
within square brackets is called a dimension. All other physical quantities can be
derived as combinations of the basic dimensions.

Equations must be dimensionally consistent. Two terms can be added only when
they have the same dimensions. :
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QUESTIONS

Name several repetitive phenomenon occurring in nature which could serve as
reasonable time standards.

Give the drawbacks to use the period of a pendulum as a time standard.

Why do we find it useful to have two units for the amount of substance, the
Kilogram and the mole?

Three students measured the length of a needle with a scale on which minimum
division is Tmm and recorded as (i) 0.2145 m (i) 0.21 m (iii) 0.214m.Which record
is correct and why?

An old saying is that “A chain is only as strong as its weakest link”. What
analogous statement can you make regarding experimental data used in a
computation?

The period of simple pendulum is measured by a stop watch. What type of errors
are possible in the time period?

Does a dimensional analysis give any information on constant of proportionality
that may appear in an algebraic expression? Expiain.

Write the dimensions of (i) Pressure (i) Density

The wavelength ;. of a wave depends on the speed v of the wave and its frequency
f. Knowing that

[21=[ L], W v B and [f]=[T"]

Decide which of the following is correct, f=vi or f=2Y

NUMERICAL':PROBLEMS

A light year is the distance light travels in one year. How many metres are there in
one light year: (speed of light = 3.0 x 10° ms ).

2

(Ans: 9.5 x 10"°m)
a) How many seconds are there in 1 year?
b) How many nanoseconds in 1 year?
¢) How many years in 1 second?
[Ans.(a) 3.1538 x 10's, (b) 3.1536 x 10"ns (c) 3.1 x 10° yr]

The length and width of a rectangular plate are measured to be 15.3 cm and 12.80 cm,
respeclively. Find the area of the plate,

(Ans: 196 cm?)
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Add the following masses given in kg upto appropriate precision. 2.189, 0.089,
11.8 and 5.32.

(Ans: 19.4 kg)

Find the value of ‘g’ and its uncertainty using T =2x lg from the following

measurements made duringan experiment
Length of simple pendulum 7 =100 cm.
Time for 20 vibrations = 40.2 s

Length was measured by a metre scale of accuracy upto 1 mm and time by stop
watch of accuracy upto 0.1 s.

(Ans: 9.76 + 0.06 ms™)
What are the dimensions and units of gravitational ‘constant G in the formula

Z: m, my
damdc

(Ans: [M'L® T2, Nm*kg™)

Show that the expression v;=v, +at is dimensionally correct, where v; is the velocity
att =0, ais acceleration and v is the velocity at time t.

The speed v of sound waves through a medium may be assumed to depend on
(a) the density p of the medium and (b) its modulus of elasticity £ which is the ratio
of stress to strain. Deduce by the method of dimensions, the formula for the speed

of sound.
(Ans: v = Constant ,-5 )
p

Show that the famous “Einstein equation” E = mc’ is dimensionally consistent.

1.10 Suppose, we are told that the acceleration of a particle moving in a circle of radius

r with uniform speed v is proportional to some power of r,say ", and some power
of v,say V", determine the powers of rand v?

(Ans:n=-1,m=2)



