ChapterJe

CIRCULAR MOTION

Learning Objectives

At the end of this chapter the students will be able to:

i

Lescribe angular motion.

Define angular displacement, angular velocity and angular acceleration.

Define radian and convert an angle from radian measure to degree and vice versa.
Use the equationS=rland v = ro.

Describe qualitatively motion in a curved path due to a perpendicular force and
understand the centripetal acceleration in case of uniform motion in a circle.

Derive the equation a, = re® = v/rand F. = me? r= mv¥r
Understand and describe moment of inertia of a body.
Understand the concept of angular momentum.

Describe examples of conservation of angular momentum.

Understand and express rotational kinetic energy of a disc and a hoop on an
inclined plane.

Describe the motion of artificial satellites.

Understand that the objects in satellites appear to be weightless.
Understand that how and why artificial gravity is produced.

Calculate the radius of geo-stationary orbits and orbital velocity of satellites.
Describe Newton's and Einstein's views of gravitation. X

W e have studied velocity, acceleration and the laws of motion, mostly as they are

iqvolyed in rectjlinear motion. However, many objects move in circular paths and their
direction is continually changing. Since velocity is a vector quantity, this change of direction
means that their velocities are not constant. Astone whirled around by a string, a car turning

around a corner and satellites in orbits around the Earth are all examples of this kind of
motion.
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8 In this chapter we will study, circular motion, rotational
@ motion, moment of inertia, angular momentum and the
related topics.

|7
b
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ComidertlnmoﬁmofashglepacﬂdePofmasamina
circular path of radius r. Suppose this motion is taking place
by attaching the particle P at the end of a massless rigid rod
P 654 of length r whose other end is pivoted at the centre O of the
circular path, as shown in Fig. 5.1 (a). As the particle is
moving on the circular path, the rod OP rotates in the plane
of the circle. The axis of rotation passes through the pivot O
and is normal to the plane of rotation. Consider a system of
axes as shown in Fig. 5.1 (b). The z-axis is taken along the
»y axis ofrotationwhthepivothsorigin of coordinates .
Axes x and y are taken in the plane of rotation. While OF is
/ rotating, suppose at any instant ¢, its position is OP,, making
X angle 6 with x-axis. At later time ¢ + At, let its position be
OP; making angle 6 + A0 with x-axis (Fig. 5.1c).

——=PN

The angular displacement A0 is assigned a positive sign
when the sense of rotation of OP is counter clock wise.

Fig. 5.1(c)
The direction associated with A@ is along the axis of
J@é rotation and is given by right hand rule which states that
& ‘
o 2 < Grasp the axis of rotation in right hand with
= fingers curling in the direction of rotation:
the thumb points in the direction of angular
displacement, as shown in Fig 5.1 (d).
Three units are generally used to express angular
Fog-bad displacement, namely degrees, revolution and radian. We
ig. 5.
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are already familiar with the first two. As regards radian
which is S! unit, consider an arc of length S of a circle of
radius r (Fig 5.2) which subtends an angle 0 at the centre
of the circle. Its value in radians (rad) is given as

0 = a“?l‘i_n_gtﬂ rad
radius

0=5 rad

r
or . 8=r@  (whereBisinradian) ... (5.1)
If OP is rotating, the point P covers a distance s = 2 nr in
one revolution of P. In radian it would be
S 2w

E=——=2n
ror
So 1 revolution = 2 rt rad = 360°
0
Or 1rad= 390 -57.2°
2n

‘.;.j‘{;_'; sy R T £ - Ve
Very often we are interested in knowing how fast or how
slow a body is rotating. It is determined by its angular
velocity which is defined as the rate at which the angular
displacement is changing with time. Referring to Fig. 5.1(c),
if AD is the angular displacement during the time
interval At, the average angular velocity w,, during this
interval is given by

AO
iy e SRR s 5.2
At Q2

The instantaneous angular velocity ® is the limit of the
ratio AB/At as At, following instant f, approaches to zero.

Thus TS R (5.3)
At=> 0 At

In the limit when At approaches zero, the angular
displacement would be infinitesimally small. So it would be a_
vector quantity and the angular velocity as defined by
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Eq.5.3 would also be a vector. Its direction is along the axis
of rotation and is given by right hand rule as described earlier.

Angular velocity is measured in radians per second which is
its Sl unit. Sometimes it is also given in terms of revolution
per minute.

5.3 ANGULAR ACCiLERATION

When we switch on an electric fan, we notice that its
angular velocity goes on increasing. We say that it has an
angular acceleration, We define angular acceleration as
the rate of change of angular velocity. If », and wy are the
values of instantaneous velocity of a rotating body at
instants ¢ and ¢, the average angular acceleration during
the interval & — 1 is given by

G 26r 0 & Aopiven ) (5.4)
o

The instantaneous angular acceleration is the limit of the

ratio %as At approaches zero. Therefore, instantaneous

angular acceleration is given by

a = Lim -A-Q b ol el ok (5.9)

Al>0

The angular acceleration is also a vector quantity whose
magnitude is given by Eq. 5.5 and whose direction is along
the axis of rotation. Angular acceleration is expressed in
units of rads?

Till now we have been considering the motion of a particle
P on a circular path. The point P was fixed at the end of a
rotating massless rigid rod. Now we consider the rotation
of a rigid body as shown in Fig. 5.3. Imagine a point P on
the rigid body. Line OP is the perpendicular dropped from
P on the axis of rotation. |t is usually referred as reference
line. As the body rotates, line OP also rotates with it with
the same angular velocity and angular acceleration. Thus
the rotation of a rigid body can be described by the rotation
of the reference line OP and all the terms that we defined
with the help of rotating line OP are also valid for the
rotational motion of a rigid body. In future while dealing
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with rotation of rigid body, we will replace it by its reference
line OP.

Consider a rigid body rotating about z-axis with an angular
velocity o as shown in Fig. 5.4 (a).

Imagine a point P in the rigid body at a perpendicular
distance r from the axis of rotation. OP represents the
reference line of the rigid body. As the body rotates, the
point P moves along a circle of radius r with a linear
velocity v whereas the line OP rotates with angular velocity
® as shown in Fig. 5.4 (b). We are interested in finding vut
the relation between @ and v. As the axis of rolaticn is
fixed, so the direction of ® always remains the saine and
© can be manipulated as a scalar. As regards the linear
velocity of the point P, we consider its magnitude only
which can also be treated as a scalar.

Suppose during the course of its motion, the point P moves
through a distance PP, = \g in a time interval At during
which reference line OP has an angular displacement A0
radian during this interval. As and A0 are related by Eq. 5.1.

AS=rae
Dividing both sides by At

........... (5.6)

In the limit when At —> 0 the ratio AS/At represents v, the
magnitude of the velocity with which point P_is moving on
the circumference of the circle. Similarly AB/At represents
the angular velocity o of the reference line OP. So
equation 5.6 becomes

VETo IR (5.7)

In Fig 5.4 (b), it can be seen that the point P is moving
along the arc P;P;. In the limit when At — 0, the length of
arc P,P, becomes very small and its direction represents
the direction of tangent to the circle at point P4. Thus the
velocity with which point P is moving on the circumference
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- Point to Ponder

Youmy'uumdauhnbpof
roller coaster ride in the
amusement parks but you never
fall down even when you are
upside down. Why?

of the circle has a magnitude v and its direction is always along
the tangent to the circle at that point. That is why the linear
velocity of the paint P is also known as tangential velocity.

Similarly Eq 5.7 shows that if the reference line OP is
rotating with an angular acceleration a, the point P will also
have a linear or tangential acceleration a;. Using Eq 5.7 it
can be shown that the two accelerations are related by

Bl s ' Bosriniss (5.8)

Egs 5.7 and 5.8 show that on a rotating body, points that
are at different distances from the axis do not have the
same speed or acceleration, but all paints on a rigid body
rotating about a fixed axis do have the same angular
displacement, angular speed and angular acceleration at
any instant. Thus by the use of angular variables we can
describe the motion of the entire body in a simple way.

Equations Of Angular Motion

The equations (5.2, 5.3, 5.4 and 5.5) of angular motion are
exactly analogous to those in linear motion except that 0,
@ and « have replaced s, v and a, respectively. As the
other equations of linear motion were obtained by
algebraic manipulation of these equations, it follows that
analogous equations will also apply to angular motion.
Given below are angular equations together with their
linear counterparts.

Linear Angular
Vi= v, +at DeRDIREE = e (5.9)
205=y7=v* " 2ahentlied (5.10)
s=v,t4%ar’ 9=m,t+%at2 .......... (5.11)

The angular equations 5.9 to 5.11 hold true only in the
case when the axis of rotation is fixed, so that all the
angular vectors have the same direction. Hence they can
be manipulated as scalars.

Example 5.1:'An electric fan rotating at 3 rev s is
switched off. It comes to rest in 18.0 s. Assuming
deceleration to be uniform, find its value. How many

revolutions did it turn before coming to rest?
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Solution: In this problem we have

w=30revs' @=0 t=180s and w«=?7 , 0=7

From Eq. 5.4 we have -2
- h“ v

=1 - ~a
o D0 (0-3;.(8))(;':vs =-0.167 rev s 1/ \

t

s/

and from Eq 5.11, we have \ \\

1
0=w|t+—2' atz

=30revs'x18.0s +%(-o.1s7 revs?) x(18.0 sy’ = 27 rev ""‘7’/

Direction of motion changes
continuously in circular motion.

The motion of a partlcle Whlch is constranned to move in a
circular path is quite interesting. It has direct bearing on the
motion of such things as artificial and natural satellites,
nuclear particles in accelerators, bodies whirling at the
ends of the strings and flywheels spinning on the shafts.

We all know that a ball whirled in a horizontal circle at the
end of a string would not continue in a circular path if the
string is snapped. Careful observation shows at once that
if the string snaps, when the ball is at the point A, in
Fig. 5.5 (b), the ball will follow the straight line path AB.

The fact is that unless a string or some other mechanism
pulls the ball towards the centre of the circle with a force,
as shown in Fig. 5.5 (a), ball will not continue along the
circular path.

The force needed to bend the normally
straight path of the particle into a circular gt
path is called the centripetal force. /

If the particle moves from A to B with uniform speed v as A
shown in Fig. 5.6 (a), the velocity of the particle changes its
direction but not its magnitude The change in velocity is
shown in Fig. 5.6 (b). Hence, the acceleration of the particle is Fig. 5.50)
> e Av
A t
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Banked tracks are needed for
turns that are taken so quickly that
friction alone cannot provide
energy for centripetal force.

where At s the time taken by the particle 1o travel from A to
8. Suppose the velocities at A and B are vy and v,
respectively. Since the speed of the particle is v, so the time

taken to travel a distance s, as shown in Fig. 5.6 (a) is

at=S
v

Av )
PN Jeead $2 R 512
) a-=-v : ( )

Let us now draw a triangle PQR such that PQ is parallel
and equal to v; and PR is parallel and equal to v, as
shown in Fig. 5.6 (b). We know that the radius of a circle is
perpendicular to its tangent, so OA is perpendicular to v;
and OB is perpendicular to v, (Fig. 5.6 a). Therefore, angle
AOB equals the angle QPR between viand v.. Further, as
Vi =V, = v and OA = OB, both triangles are isosceles.
From geometry, we know “two isosceles triangles are
similar, if the angles between their equal arms are equal”.
Hence, the triangle OAB of Fig. 5.6 (a) is similar to the
triangle POR of Fig. 5.6 (b) Hence, we can write
Av _AB

v r

If the point B is close to the point A on the circle, as will be the
case when At > (, the arc AB is of nearly the same length as
the line AB. To that approximation, we can write AB = s, and
after substituting and rearranging terms, we have,

Av:Sl
) r

Putting this value for Av in the Eg. 5.12, we get

v2
e A, e, (5.13)
where a is the instantaneous Aacceleration. As this
accelerationis caused by the centripetal force, it is called the
centripetal acceleration denoted by a.. This acceleration is
directed along the radius towards the centre of the circle. In
Fig. 5.6 (a) and (b), since PQ is perpendicularto OA and PR
is perpendicular to OB, so QR is perpendicularto AB. It may
be noted that QR is parallel to the perpendicular bisector of
AB. As the acceleration of the object moving in the circle is

106



parallel to Av when AB —> 0, so centripetal acceleration is
directed along radius towards the centre of the circle. It can,
therefore, be concluded that:

The instantaneous acceleration of an object
travelling with uniform speed _in a circle is
directed towards the centre of the circle and
is called centripetal acceleration.

The centripetal force has the same direction as the
centripetal acceleration and its value is given by

2
Fo=Mg =" e (5.14)

In angular measure, this equation becomes
B B R ok s sisicnsus st (5.15)

Example 5.2: A 1000 kg car is turning round a corner at
10 ms ™' as it travels along an arc of a circle. If the radius of
the circular path is 10 m, how large a force must be
exerted by the pavement on the fyres to hold the car in the
circular path?

Solution: The force required is the centripetal force.
So

2 2.2
F= T 1°°°"91’::‘°’“ S _10x10%kgms? =1.0x10*N
This force must be supplied by the frictional force of the
pavement on the wneels.

Example 5.3: A ball tied to the end of a string, is swung
in a vertical circle of radius r under the action of gravity as
shown in Fig. 5.7. What will be the tension in the string
when the ball is at the point A of the path and its speed is v
at this point?

Solution: For the ball to travel in a circle, the force
acting on the ball must provide the required centripetal
force. In this case, at point A, two forces act on the ball, the
pull of the string and the weight w of the ball. These forces
act along the radius at A, and so their vector sum must
fumnish the required centripetal force. We, therefore, have
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Curved flight at high speesd
requires 3 large centripetal force
that makes the stunt dangerous
aven if the air planes are not so
close.
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Fig. 58

The force F causes a torque about
the axis O and gives the mass m
an angular acceleration about the
pivot point.

Do You Know?

2
T+w=-'-7L as w=mg

r
2 2
mv 4
Ta——-—— =Mm|——

2
If "7=g. then T will be zero and the centripetal force is
Just equal to the weight.

N o PN A T T T Rt 25
Consider a mass m attached to the end of a massless rod
as shown in Fig. 5.8 Let us assume that the bearing at the
pivot point O is frictionless. Let the system be in a horizontal
plane. A force F is acting on the mass perpendicularto the rod
and hence, this will accelerate the mass according to

F=ma

In doing so the force will cause the mass to rotate about O.
Since tangential acceleration & is related to angular
acceleration o by the equation.

a =ra

S0, F=mrg

.As turning effect is produced by torque T, it would,
therefore, be better to write the equation for rotation in
terms of torque. This can be done by multiplying both sides
of the above equation by r. Thus

rF = T =torque = mri

which is rotational analogue of the Newton's second law of
motion, F = ma.

Here F is replaced by 1, a by « and m by mr”. The quantity
mr’is known as the moment of inertia and is represented by
1. The moment of inertia plays the same role in angular
motion as the mass in linear motion. It may be noted that

moment of inertia depends not only on mass m but also on >
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Most rigid bodies have different mass concentration at
different distances from the axis of rotation, which means
the mass distribution is not uniform. As shown in Fig. 5.9(a),

the rigid body is made up of n small pieces of masses
For Your Information

Moments of Inertla of varlous
bodies about AA -

(b)
Fig. 5.9
Each small piece of mass within a large, rigid body undergoes
the same angular acceleration about the pivot point.

my, My,....My, at distances ry, r3,....r, from the axis of rotation O. / A
Let the body be rotating with the angular acceleration «
so the magnitude of the torque acting on m; is (c)

Ty =myntay A

Similarly, the torque on m; is
T, = mar’a
2 212 K2
and so on.

Since the body is rigid, so all the masses are rotating with  (d)
the same angular acceleration a,

Total torque T e is then given by

& 2 2 2
Total = (Myry" + " +,....¥My Iy ) &

=(Tmri)a
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{a) (b

The sphere in (a) is rotating in the
sense given by the gold arrow. Its
angular velocity and angular
momentum are taken o be
upward along the rotational axis,
as shown by the right-hand rule
in(b).

or TRl evat sl (5.16)

where [ is the moment of inertia of the body and is
expressed as

n
PERET (5.17)

i=1

5.7 ANGULAR MOMENTUM

We have already seen that linear momentum plays an
important role in translational motion of bodies. Similarly,
another quantity known as angular momentum has
important role in the sludy of rotational motion.

A particle is said to posses an angular
momentum about a reference axis if it
So moves that its angular position
changes relative to that reference axis,

The angular momentum L of a particle of mass m moving
with velocity v and momentum P (Fig. 5.10) relative to the
origin O is defined as

C=Pxpae paosiy s (5.18)

where r is the position vector of the particle at that instant
relative to the origin O. Angular momentum is a vector
Quantity. Its magnitude is

L=rpsint=mrvsing

where 6 is the angle between r and P. The direction of L is
perpendicular to the plane formed by rand p and its sense
is given by the right hand rule of vector product. S| unit of
angular momentum is kg m?s ' or J s.

If the particle is moving in a circle of radius r with uniform
angular velocity , then angle between r and tangential
velocity is 90°. Hence

L = mrv sin 90° = mry

But V=rm
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Hence L=mri

Now consider a symmetric rigid body rotating about a fixed
axis through the centre of mass as shown in Fig 5.11.
Each particle of the rigid body rotates about the same axis
in a circle with an angular velocity . The magnitude of the
angular momentum of the particle of mass m; is mv,r;
about the origin O. The direction of L, is the same as that
of ©. Since v, = r, ®, the angular momentum of the ith
particle is m; r’®. Summing this over all particles gives the
total angular momentum of the rigid body.

n
L= (Zm r?) w=lo

i1

Where I is the moment of inertia of the rigid body about the
axis of rotation.

Physicists usually make a distinction between spin angular
momentum (L) and orbital angular momentum (L.
The spin angular momentum is the angular momentum of
a spinning body, while orbital angular momentum is
associated with the motion of a body along a circular path.

The difference is illustrated in Fig. 5.12. In the usual
circumstances concerning corbital angular momentum, the
orbital radius is large as compared to the size of the body,
hence, the body may be considered to be a point object.

Example 5.4: The mass of Earth is 6.00 x 10* kg. The
distance r from Earth to the Sun is 1.50 x 10" m. As seen | a
from the direction of the North Star, the Earth revolves
counter-clockwise around the Sun. Determine the orbital
angular momentum of the Earth about the Sun, assuming
that it traverses a circular orbit about the Sun once a year -
(3.16 x107s).

Solution: To find the Earth's orbital angular momentum =T "

we must first know its orbital speed from the given data. . \
When the Earth moves around a circle of radius r, it travels 0 ;
a distance of 2nr in one year, its orbital speed v, is thus ’

2ar ®)
0777
Fig. 5.12

Orbital angular momentum of the Earth = L, = mv,r

(|



_2r’m

r

_ 2r(1.50X10" m)? X (6.00X10%kg)
3.16 X10s

=267 Xx10¥kg m? 5™
The sign is positive because the revolution is counter
clockwise.

w Y ol | o i gy <
ENTUM Sl

tion of angular momen

tum states that
if no external torque acts on a system, the total angular
momentum of the system remains constant.

Fig. 5.13 Ltoh!=|-1 +Lz+ a5 Constant

Aman diing from a diving board. The law of conservation of angular momentum is one of

the fundamental principles of Physics. It has been verified
from the cosmological to the submicroscopic level. The
effect of the law of conservation of angular momentum is
readily apparent if a single isolated spinning body alters its
moment of inertia. This is illustrated by the diver in
Fig.513. The diver pushes off the board with a small angular
velocity about a horizontal axis through his centre of
gravity. Upon lifting off from the board, the diver's legs
and arms are fully extended which means that the diver
has a large moment of inertia 7, about this axis. The
moment of inertia is considerably reduced to a new value
1z, when the legs and arms are drawn into the closed tuck
pasition. As the angular momentum is conserved, so

Loy = Lo,

Hence, the diver must spin faster when moment of inertia
becomes smaller to conserve angular momentum. This
enables the diver to take extra somersaults,

Point to Ponder -
’

52

The angular momentum is a veclor quantity with direction
Why does the coasting rotating along the axis of rotation. In the above example, we
mmw i e discussed the conservation of magnitude of angular

momentum. The direction of angular momentum along the
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axis of rotation also remain fixed. This is illustrated by the
fact given below

The axis of rotation of an object will not change
its orientation unless an external torque causes
itto do so.

This fact is of great importance for the Earth as it moves
around theSun. No other sizeable torque is experienced by
the Earth, because the major force acting on it is the pull of
the Sun. The Earth’s axis of rotation, therefore, remains fixed
in one direction with reference to the universe around us.

5.9 ROTATIONAL KINETIC ENERGY

If a body is spinning about an axis with constant angular
velocity o, each point of the body is moving in a circular
path and, therefore, has some K.E. To determine the total
K.E. of a spinning body, we imagine it to be composed
of tiny pieces of mass my, my, ..... If a piece of mass m; is
at a distance r, from the axis of rotation, as shown in
Fig. 5.14, it is moving in a circle with speed

Vi=ro
Thus the K.E of this piece is

KE=+ mvi=_"'m, (rw)?
2 2

1 2. 2
=~ mrfw
2

The rotational K.E of the whole body is the sum of the
kinetic energies of all the parts. So we have

KEm = % (Mo’ + mare’*......... )

1
= 5 (m,r,’ +m2fz?+ ........ J©

We at once recognize that the quantity within the brackets
is the moment of inertia | of the body. Hence, rotational
kinetic energy is given by

113

" Do You Know?

(b)

Rotational collision  the clutch




KEjm= % Foytaiom Sl A (5.19)

If rolling or spinning bodies are present in a system, their
rotational kinetic energy must be included as part of the
total kinetic energy. Rotational kinetic energy is put to

power stokes of the pistons, so that the energy is
distributed over the full revolution of the crankshaft and
hence, the rotation remains smooth.

> - 1

As the sphere rolis to the bottom of
the incline, its gravitational

knetc_eneray of rotaion and | TOM €quation 5.19, the rotational kinetic energy of a disc is

KEu= -;- I &

From page 109, for a disc

1
1= mA
2 m
so KEn= 2 %3 i o
; oo
therefore, =% mrP o?
since P o= 2
K.Epo = 41 g el (5.20)
and for a hoop, since 1 =mr’ (page 109)
then K.Eq= % I w? =% mr’e? page 109
L 2
KEw=2m? (5.21)

When both starts moving down an inclined plane of height
h, their motion consists of both rotational and translational
motions (Fig. 5.15). If no energy is lost against friction, the
total kinetic energy of the disc or hoop on reaching the
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bottomn of the incline must be equal to its potential energy

at the top.
PE. =K Eqsn + KEn R b
mgh=1m+d 1a? ... (5.22)
2 2
For disc mgh = % mv? + % mv’

or V= "ig'-’- .......... (5.23)

and forhoop  mgh = ; my + % mv

or VEJGN W~ s (5.24)

Example 5.5: A disc without slipping rolls down a hill of
height 10.0 m. If the disc starts from rest at the top of the
hill, what is its speed at the bottom? ;

Solution: Using Eq. 5.23

V= ﬂ_g.'.'
J 3

-2
4x9.80ms ™" x10.0m _ 44 4 me! ey N

L}

3 3 "“,-:.. = ‘_ e
11 kms'or
5.10 ARTIFICIAL SATELLITES v

Satellites are objects that orbit around the Earth. They are put
into orbit by rockets and are held in orbits by the gravitational
pull of the Earth. The low flying Earth satellites have
acceleration 9.8 ms? towards the centre of the Earth. If they
do not, they would fly off in a straight line tangent to the

Earth. When the satellite is moving in a circle, it has an
2
acceleration Yr— In a circular orbit around the Earth, the

centripetal acceleration is.supplied by gravity and we have, m'?".m".?' :ﬁmoo&m
v") Satellites Orbits
g = —R—' .......... (5'25)



Fig.5.16

The moment you switch on your
mobile phone, your location can be
tracked immediately by global
positioning system.

Where v is the orbital velocity and R is the radius of the
Earth (6400 km). From Eq. 5.25 we get,

v=JoR

= V9.8ms2x 6.4x10° m
=79kms™’

This is the minimum velocity necessary to put a satellite
into the orbit and is called critical velocity. The period T is
given by

2R 6400 km
T="2" 23,145 290 x
v 79kms

= 5060s = 84 min approx.

If, however, a sateliite in a circular orbit is at an appreciable
distance h above the Earth's surface, we must take into
account the experimental fact that the gravitational
acceleration decreases inversely as the Square of the
distance from the centre of the Earth (Fig. 5.16).

The higher the satellite. the slower will the required speed
and longer it will take to complete one revolution around
the Earth.

Close orbiting satellites orbit the Earth at a height of about
400 km. Twenty four such satellites form the Global
Positioning System. An airline pilot, sailor or any other person
¢an now use a pocket size instrument or mobile phone to find
his position on the Earth's surface to within 10m accuracy.

We often hear that objects appear to be weightless in a
spaceship circling round the Earth. In order to examine the
effect in some detail, let ys first define, what do we mean
by the weight? The real weight of an object is the
gravitational pull of the Earth on the object. Similarly the
weight of an object on the surface of the Moon is taken to
be the gravitational pull of the Moon on the object.

Generally the weight of an object is measured by a spring
balance. The force exerted by the object on the scale is
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equal to the pull due to gravity on the object, i.e., the
weight of the object. This is not always true, as will be
explained a little later, so we call the reading of the scale
as apparent weight.

To illustrate this point, let us consider the apparent weight
of an object of mass m, suspended by a string and spring
balance, in a lift as shown in Fig. 5.17 (a). When the lift is
at rest, Newton's second law tells us that the acceleration
of the object is zero, the resultant force on it is also zero. If
w is the gravitational force acting on it and T is the tension
in the string then we have,

T-w=ma
As a=0
hence, T g (5.26)

This situation will remain so long as a = 0. The scale thus
shows the real weight of the object. The weight of the
object seems to a person in the lift to vary, depending on
its motion.

When the lift is moving upwards with an acceleration a,
then '

T—-w=ma
or T=w+ma P S (5.27)

the object will then weigh more than its real weight by an
amount ma.

Now suppose, the lift and hence, the object is moving
downwards with an acceleration a (Fig. 5.17 b), then we
have

w-T=ma
which shows that
T=w—ma  .c.ccevns (5.28)

The tension in the string, which is the scale reading, is
less than w by an amount ma. To a person in the
accelerating lift, the object appears to weigh less than w.
its apparent weight is then (w — ma).
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and end of a ride, not during the
rest of the ride when thatvelocity is
constant.

Let us now consider that the lift is falling freely under
gravity. Then a = g, and hence,

T=w-mg
As the weight w of the body is equal to mg so
T=mg-mg=0

The apparent weight of the object will be shown by the
scale to be zero,

It is understood from these considerations that apparent
weight of the object is not equal toits true weight inan
accelerating system. It is equal and opposite to the force
required to stop it from falling in that frame of reference.

5.12 WEIGHTLESSNESS IN SATELLITES
AND GRAVITY FREE SYSTEM

When a satellite is falling freely in space, everything within
this freely falling system will appear to be weightless. It does
not matter where the object is, whether it is falling under the
force of attraction of the Earth, the Sun, or some distant star.

An Earth's satellite is freely falling object. The statement
may be surprising at first, but it is easily seen to be correct.
Consider the behaviour of a projectile shot parallel to the
horizontal surface of the Earth in the absence of air friction.
If the projectile is thrown at successively larger speeds,
then during its free fall to the Earth, the curvature of the
path decreases with increasing horizontal speeds. If the
object is thrown fast enough parallel to the Earth, the
curvature of its path will match the curvature of the Earth
as shown in Fig. 5.18. In this case the space ship will
simply circle round the Earth.,

-The space ship is accelerating towards the centre of the

Earth at all times since it circles round the Earth. Its radial
acceleration is simply g, the free fall acceleration. In fact,
the space ship is falling towards the centre of the Earth at
all the times but due to spherical shape of the Earth, it
never strikes the surface of the Earth. Since the space
ship is in free fall, all the objects within it appear to be
weightless: Thus no force is required to hold an object
faling in the frame of reference of the space craft or
satellite. Such a system is called gravity free system.
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5.13 ORBITAL VELOCITY

The Earth and some other planets revoive round the Sun
in nearly circular paths. The artificial satellites launched by
men also adopt nearly circular course around the Earth.
This type of motion is called orbital motion.

Fig. 519 shows a satellite going round the Earth in a
circular path. The mass of the satellite is ms and v is its
orbital speed. The mass of the Earth is M and r represents
the radius of the orbit. A centripetal force m.v7r is required
to hold the satellite in orbit. This force is provided by the
gravitational force of attraction between the Earth and the
satellite. Equating the gravitational force to the required
centripetal force, gives

GmM my?
r? r
or o o SPEE LN (5.29)

r

This shows that the mass of the satellite is unimportant in
describing the satellite’s orbit. Thus any satellite orbiting at
distance r from Earth's centre must have the orbital speed
given by Eq. 5.29. Any speed less than this will bring the
satellite tumbling back to the Earth.

Example 5.6: An Earth satellite is in circular orbit at a
distance of 384,000 km from the Earth's surface. What is its

period of one revolution in days? Take mass of the Earth:

M = 6.0 x 10**kg and its radius R = 6400 km.

Solution:
As r=R+h=(6400+384000)=390400km
-1 2L 2 24
P o [6.67x10°"" Nm?kg? x6 x10*kg
ey 390400km
=1.01 kms™

Also

2nr B 1 1day
T=_ _2x3.14 400 kmX.

v £ s s 1.01kms™' 60x60x24s

= 27.5days
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In 1984, at a height of 100km
above Hawali island with a speed
of 20000kmh”’ Bruce McCandless
stepped into space from a space
shuttle and became the first
human satellite of the Earth.



5.14 ARTIFICIAL GRAVITY

In a gravity free space satellite there will be no force that
will force any body to any side of the spacecratft. If this
satellite is to stay in orbit over an extended period of time,
this weightlessness may affect the performance of the
astronauts present in that Spacecraft. To over come this
difficulty, an artificial gravity is created in the spacecraft.
This could enable the crew of the space ships to function
in an almost normal manner. For this situation to prevail,
the space ship is set into rotation around its own axis. The
astronaut then is pressed towards the outer rim and exerts
a force on the 'floor' of the spaceship in much the same
way as on the Earth.

Consider a spacecraft of the shape as shown in Fig. 5.20.
The outer radius of the spaceship is R and it rotates
around its own central axis with angular speed . then its
angular acceleration a, is

a, = Ro?

Butm - 2—: where T is the period of revolution of spaceship
2
= =R(2n)2 _R4n

Hence' 72 TN E

As frequency f = 1/T, therefore a. = R 4 22 £2

or f<= or f=—__|]Z¢
P— 4n°R 2ny R

The frequency f is increased to such an extent that a,
equals to g. Therefore,

ac = g
and ‘ o %{ N (5.30)

When the space ship rotates with this frequency, the
artificial gravity like Earth is provided to the inhabitants of

the space ship.

515 GEOSTATIONARY ORBITS
An interesting and useful example of satellite motion is the
geo-synchronous or geo-stationary satellite. This type of
satellite is the one whose orbital motion is synchronized with
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the rotation of the Earth. In this way the synchronous
satellite remains always over the same point on the equator
as the Earth spins on its axis. Such a satellite is very useful
for worldwide communication, weather observations,
navigation, and other military uses.

What should the orbital radius of such a satellite be so that
it could stay over the same point on the Earth surface? The
speed necessary for the circular orbit, given by Eq. 5.29, is

GM
r

V =

but this speed must be equal to the average speed of the
satellite in one day, i.e.,

s _2nr
V 5 - c—

t T
where T is the period of revolution of the satellite, that is
equal to one day. This means that the satellite must move-
in one complete orbit in a time of exactly one day. As the
Earth rotates in one day and the satellite will revolve
around the Earth in one day, the satellite at A will always
stay over the same point A on the Earth, as shown in
Fig. 5.21. Equating the above two equations, we get

2nr 'GM
t r

Squaring both sides

4n?r? _GM
12 —

2

or e
4n

From this we get the orbital radius

1

GMT )3
r_-[‘mz 7 .......... (5.31)

>

Substituting the values for the Earth into Eq. 5.31 we get
r=4.23 x10* km
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A geostationary satellite orbils the
Earth once per day over the
equator so it appears to be
stationary. It is used now for
interational communications
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The whole Earth can be coverad
by just three geo-stationary
satellites.

Communications satellite
INTELSAT VI

Do You Know?

1GHz = 10" Hz

which is the orbital radius measured from the centre of the
Earth, for a geostationary satellite. A satellite at this height
will always stay directly above a particular. point on the
surface of the Earth. This height above the equator comes
to be 36000 km. '

.16 COMMUNICATION SATELLITES

A satellite communication system can be set up by placing
several geostationary satellites in orbit over different points
on the surface of the Earth. One such sateliite covers 120° -
of longitude, so that whole of the populated Earth'’s surface
can be covered by three correctly positioned satellites as
shown in Fig. 5.22. Since these geostationary satellites
seem to hover over one place on the Earth, continuous
communication with any place on the surface of the Earth
can be made. Microwaves are used because they travel in a
narrow beam, in a straight line and pass easily through the
atmosphere of the Earth. The energy needed to amplify and
retransmit the signals is provided by large solar cell panels
fitted on the satellites. There are over 200 Earth stations
which transmit signals to satellites and receive signals via
satellites from other countries. You can also pick up the
signal from the satellite using a dish antenna on your house.
The largest satellite system is managed by 126 countries,
International  Telecommunication Satellite Organization
(INTELSAT). An INTELSAT Vi satellite is shown in the
Fig.5.23. It operates at microwave frequencies of 4,6,11 and
14 GHz and has a capacity of 30, 000 two way telephone

- -circuits plus three TV channels.

Example,f 5.7: Radio and TV signals bounce from a
synchronous satellite. This satellite circles the Earth once in
24 hours. So if the satellite circles eastward above the
equator, it stays over the same spot on the Earth because
the Earth is rotating at the same rate. (a) What is the orbital
radius for a synchronous satellite? (b) What is its speed?

Solution:

1
MT?|?
From Eq. 531, r= [G;“z J

where G=667x10"Nm’kg? M= 6.0 x 10%kg
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and T=24 x 60 x 60s.
Therefore, on substitution; we get

1/3

.31 g -2 24
ot { AT etatigh sha st te)
X 4(3.14)

The gravity can bend light. The
gravily of a star could be used to
focus light from stars.

= 423x10'm
b) Substituting the value of r in equation v —2-;‘-,5 "
we get, '
_25(4.23x107m) o4 o ;
© 864005
5.17 NEWTON’S AND EINSTEIN’S VIEWS
OF GRAVITATION

According to Newton, the gravitation is the intrinsic
property of matter that every particle of matter attracts
every other particle with a force that is directly proportional
to the product of their masses and is inversely proportional
to the square of the distance between them.

According to Einstein's theory, space time is curved,
especially locally near massive bodies. To visualize this,
we might think of space as a thin rubber sheet; if a heavy
weight is hung from it, it curves as shown in Fig 5.24. The
weight corresponds to a huge mass that causes space
itself to curve. Thus, in Einstein's theory we do not speak
of the force of gravity acting on bodies; instead we say that
bodies and light rays move along geodesics (equivalent to
straight lines in plane geometry) in curved space time.
Thus, a body at rest or moving slowly near the great mass
of Fig. 5.24 would follow a geodesic toward that body.

Einstein's theory gives us a physical picture of how gravity
works; Newton discovered the inverse square law of gravity;
but explicitly said that he offered no explanation of why
gravity should follow an inverse square law. Einstein’s theory
also says that gravity follows an inverse square law (exceptin
strong gravitational fields), but it tells us why this should be
so. That is why Einstein’s theory is better than Newton's,
even though it includes Newton's theory within itself and
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Rubber sheet analogy for curved
space-time.

Bending of staright by the Sun.
Light from the star A is deflected as
it passes close to the Sun on its
way to Earth, We see the starin the
apparent direction B, shifted by the
angle¢. Einstein predicted that
$ = 1.745 seconds of angle which
was found to be the same during
the solar eclipse of 1919



gives the same answers as Newton'’s theory everywhere
except where the gravitational field is very strong.

Einstein inferred that if gravitational acceleration and
inertial acceleration are precisely equivalent, gravity must
bend light, by a precise amount that could be calculated.
This was not entirely a startling suggestion: Newton's
theory, based on the idea of light as a stream of tiny
particles, also suggested that a light beam would be
deflected by gravity. But in Einstein's theory, the
deflection of light is predicted to be exactly twice as
great'as it is according to Newton's theory. When the
bending of starlight caused by the gravity of the Sun
was measured during a solar eclipse in 1919, and found to
match Einstein's prediction rather than Newton's, then
Einstein's theory was hailed as a scientific triumph.

Angular displacement is the angle subtended at the centre of a circle by a particle
moving along the circumference in a given time. §

Sl unit of angular measurement is radian.
Angular acceleration is the rate of change of angular velocity.
Relationship between angular and tangential or linear quantities.

s=rd Vr=rm | ar=ra
The force needed to move a body around a circular Path is called centripetal force
2
and is calculated by the expression F. = mra? - M

5
Moment of inertia is the rotational analogue of mass in linear motion. It depends on
the mass and the distribution of mass from the axis of rotation.

Angular momentum is the analegue of linear momentum and is defined as the
product of moment of inertia and angular velocity.

Total angular momentum of all the bodies in a system remains constant in the
absence of an external torque.

Artificial satellites are the objects that orbit around the Earth due to gravity.
Orbital velocity is the tangential velocity to put a satellite in orbit around the‘é,érth.

Artificial gravity is the gravity like effect produced in an orbiting spaceship to
overcome weightlessness by spinning the spaceship about its own axis.

Geo-stationary satellite is the one whose orbital motion is synchronized with the
rotation of the Earth.

Albert Einstein viewed gravitation as a space-time Curvature around an object,
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Explain the difference between tangential velocity and the angular velocity. If one of
these is given for a wheel of known radius, how will you find the other?

Explain what is meant by centripetal force and why it must be furnished to an object if
the object is to follow a circular path?

What is meant by moment of inertia? Explain its significance.

What is meant by angular momentum? Explain the law of conservation of angular
momentum.

Show that orbital angular momentum L, = mvr.

Describe what should be the minimum velocity, for a satellite, to orbit close to the
Earth around it.

State the direction of the following vectors in simple situations; angular momentum
and angular velocity.

Explain why an object, orbiting the Earth, is said to be freely falling. Use your
explanation to point out why objects appear weightless under certain circumstances.

When mud flies off the tyre of a moving bicycle, in what direction does it fly?
Explain.

A disc and a hoop start moving down from the top of an inclined plane at the same
time. Which one will be moving faster on reaching the bottom?

Why does a diver change his body positions before and after diving in the pool?

2 A student holds two dumb-bells with stretched arms while sitting on a turn table. He
is given a push until he is rotating at certain angular velocity. The student then pulls the
dumb-bells towards his chest (Fig. 5.25).‘¥Vhat will be the effect on rate of rotation?

<Jr5 b

Explain how many minimum number of geo-stationary satellites are required for global
coverage of T.V transmission.
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A tiny laser beam is directed from the Earth to the Moon. If the beam is to have a

diameter of 2.50 m at the Moon, how small must divergence angle be for the

beam? The distance of Moon from the Earth is 3.8 x 10°m. #
(Ans: 6.6 x 10 rad)

A gramophone record turntable accelerates from rest to an angular velocity of

45.0 rev min' in 1.60s. What s its average angular accelération? (Ans: 2,68 rart s%)
A body of moment of inertia 7 = 0.80 kg m* about a fixed axis, rotates with a
constant angular velocity of 100 rad s, Calculate its angujar momentum L and the
torque in thi tion.

que to susta is motion (Ans: 80 Js, 0)

et

Consider the rotating cylinder shown in Fig. 5.26.
Suppose that m = 5.0 kg, F =060 N and r=0.20 m.
Calculate () the torque acting on the cylinder, (b) the

angular acceleration of the cylinder.
(Moment of inertia of cylinder = 2 mr*)

(Ans: 0.12 Nm, 1.2 rad s?)
Calculate the angular momentum of a star of mass 2.0 x 10¥ kg and radius
7.0 x 10° km. If it makes one complete rotation about its axis once in 20 days, what

£ s sie -
S N e (Ans: 1.4 x 10% J s, 2.5 x 10% J)

A 1000 kg car travelling with a speed of 144 km h™' round a curve of radius 100 m.
Fi S tripetal force.
ind the necessary centripe rce (Ans: 1.60% 10° N)

What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km
radius so that there will be no tendency for the pilot to fall down at the highest point?
(Ans: 99 ms™)

The Moon orbits the Earth so that the same side always faces the Earth.
Determine the ratio of its spin angular momentum (about its own axis) and its
orbital angular momentum. (In this case, treat the Moon as a particle orbiting the
Earth). Distance t%etween the Earth and the Moon is 3.85 x 10° m. Radius of the
Moon is 1.74 x 10° m. ;
(Ans: 8.2 x 10°)

The Earth rotates on its axis once a day. Suppose, by some process the Farth contracts
SO that its radius is only half as large as at present. How fast will it be rotating then?

- 2
(For sphere 1= 2/5 MR?). (Ans: The Earth would complete its rotation in 6 hours)

What should be the orbiting speed to launch a sateliite in a circuI%r orbit 900 km
above the surface of the Earth? (Take mass of the Earth as 6.0 x 10" and its radius

as 6400 km). (Ans: 74 km s™)

126



