"Chapter YW

~ OSCILLATIONS

Learning Objectives

At the end of this chapter the students will be able to:

w

Investigate the motion of an oscillator using experimental, analytical and graphical
methods.

Understand and describe that when an object moves in a circle the motion of its
projection on the diameter of the circle is simple harmonic.

Show that the motion of mass attached to a spring is simple harmonic.

Understand that the motion of simple pendulum is simple harmonic and to
calculate its time period.

Understand and use the terms amplitude, time period, frequency, angular
frequency and phase difference.

Know and use of solutions in the form of x = x, cos wt or y =y, sin wt.
Describe the interchange between kinetic and potential energies during SHM.
Describe practical examples of free and forced oscillations.

Describe practical examples of damped oscillations with particular reference to
the effects of the degree of damping-and the importance of critical damping in
cases such as car suspension system.

M any a times, we come across a type of motion in which a body moves to and fro about

a mean position. It is called oscillatory or vibratory motion. The oScillatory motion is called
periodic when it repeats itself afterequal intervals of time.

Some typical vibrating bodies are shown in Fig. 7.1. It is our common observation that
a) a mass, suspended from a spring, when pulled down and then released, starts

oscillating (Fig. 7.1 a),

) the bob of a simple pendulum when displaced from its rest position and released,

vibrates (Fig. 7.1 b).
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(Vibrating objeots)
Fig. 7.1

Let us consider a mass m attached to one end of a

c) a steel ruler clamped at one end to a bench oscillates
when the free end is displaced sideways (Fig. 7.1 ¢).

d) a steel ball rolling in a curved dish, oscillates about its
rest position (Fig. 7.1 d).

Thus to get oscillations, a body is pulled away from its rest
or equilibrium position and then released. The body oscillates
due to a restoring force. Under the action of this restoring
force, the body accelerates and it overshoots the rest
position due to inertia. The restoring force then pulls it
back. The restoring force is always directed towards
the rest position and so the acceleration is also directed
towards the rest or mean position.

It is observed that the vibrating bodies produce waves.
For example, a violin string produces sound waves in air.
There are many phenomena in nature whose explanation
requires the understanding of the concepts of vibrations
and waves. Although many large structures, such as
skyscrapers and bridges, appear to be rigid, they actually
vibrate. The architects and the engineers who design and
build them, take this fact into account.

.

*

n elastic
spring which can move freely on a frictionless horizontal
surface as shown in Fig. 7.2 (a). When the mass is
displaced towards right thraugh a distance x (Fig. 7.2 b),
the force F at that instant is given by Hooke's law F = kx
where k is a constant known as spring constant. Due to
elasticity, spring opposes the applied force which produces
the displacement. This opposing force is called restoring
force F, which is equal and opposite to the applied force
within_elastic limit of the spring. Hence

AR A R (7.1)

The negative sign indicates that F: is directed opposite to
X. i.e., towards the equilibrium position. Thus we see that
in a system obeying Hooke's law, the restoring force F, is
directly proportional to the displacement x of the system
from its equilibrium position and is always directed towards
it. When the mass is released, it begins to oscillate about
the equilibrium position (Fig. 7.2 ¢). The oscillatory motion
taking place under the action of such a restoring force is
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known as simple harmonic motion (SHM). The acceleration
a produced in the mass m due to restoring force can be
calculated using second law of motion

F=ma
Then, -kx = ma
or a= --k—x MErvi (7.2)
m
or aoc -x

The acceleration at any instant of a body
executing SHM is proportional to 2N
and is always directed towards its mean position.

We will now discuss various terms which are very often
used in describing SHM.

(i) _ Instantaneous Displacement and Amplitude

of Vibration

It can be seen in Fig. 7.2 that when a body is vibrating, its
displacement from the mean position changes with time. . .
The value of its distance from the mean position at any A™% %
time is known as its instantaneous displacement. It is zero 5] H

at the instant when the body is at the mean position and is
maximum at the extreme positions. The maximum value of
displacement is known as amplitude.

The arrangement shown in Fig. 7.3 can be used to record
the variations in displacement with time for a mass-spring
system. The strip of paper is moving at a constant speed
from right to left, thus providing a time scale on the strip.
A pen attached with the vibrating mass records its
displacement against time as shown in Fig. 7.3. It can
be seen that the curve showing the variation of
displacement with time is a sine curve. It is usually
known as wave-foom of SHM. The points B and D
correspond to the extreme positions of the vibrating mass
and points A,C and E show its mean position. Thus the line
ACE represents the level of mean position of the mass on
the strip. The amplitude of vibration is thus a measure of
the line Bb or Dd in Fig. 7.3,

Movement of Paper
<‘
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(ii) Vibration

A vibration means one complete round trip of the body in
motion. In Fig. 7.3, it is the motion of mass from its mean
position to the upper extreme position, from upper extreme
position to lower extreme position and back to its mean
position. In Fig. 7.3, the curve ABCDE correspond to the
different positions of the pen during one complete
vibration. Alternatively the vibration can also be defined as
motion of the body from its one extreme position back to
the same extreme position. This will correspond to the
portion of curve from points B to F or from paints D to H.

(iii) Time Period
Itis the time T required to complete one vibration.
(iv) Frequency

Frequency f is the number of vibrations executed by a body
in one second and is expressed as vibrations per second
or cycles per second or hertz (Hz).

The definitions of T and f show that the two quantities are
related by the equation

i R S (7.3)

s | RS
.

(v)  Angular Frequency

If T is the time period of a bedy executing SHM, its angular
frequency will be

o) Zx B - TVCHR, R (7.4)
T

Angular frequency o is basically a characteristic of circular
motion. Here it has been introduced in SHM because it
provides an easy method by which the value of
instantaneous displacement and instantaneous velocity of
a body executing SHM can be computed.

Let a mass m, attached with the end of a véArti'caII‘y
suspended spring, vibrate simple harmonically with period
T, frequency f and amplitude x,. The motion of the mass is
displayed by the pointer P; on the line BC with A as mean
position and B, C as extreme positions (Fig. 7.4a).

Assuming A as the position of the pointer at
t = 0, it will move so that it is at B,A,C and back to A at
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instants 7/4, T/2, 37/4 and T respectively. This will
complete one cycle of vibration with amplitude of vibration

being x, = AB = AC.

The concept of circular motion is introduced by considering a
point P moving on a circle of radius x, , with a uniform angular
frequency © = 2r/T, where T is the time period of the
vibration of the pointer. It may be noted that the radius of the
circle is equal to the amplitude of the pointer's motion.
Consider the motion of the point N, the projection of P on the
diameter DE drawn parallel to the line of vibration of the
pointerin Fig. 7.4 (b). Note that the level of points D and E

S T

L

L

is the same as the points B and C. As P describes
uniform circular motion with a constant angular speed o, N
oscillates to and fro on the diameter DE with time period T.
Assuming O, to be the position of P at t = 0 , the position of
the point N at the instants 0, 774, 7/2, 3T/4 and T will Se at
the points O,D,0,E and O respectively. A comparison of the
motion of N with that of the pointer P, shows that it is a
replica of the pointer's motion. Thus the expressions of
displacement, velocity and acceleration for the motion of N
also hold good for the pointer P,, executing SHM.

(i) Displacement

Referring to Fig. 7.4 (b), if we count the time ¢ = 0 from the
instant when P is passing through O;, the angle which the
radius OP sweeps out in time tis ZO/0P = §=awt. The
displacement x of N at the instant t will be

x = ON = OP sin £0,0P
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Fig. 7.5a)

or X=X, sind
or X=H0ol = Asicnn (7.5)

This will be also the displacement of the pointer P, at the
instant ¢,

The value of x as a functions of 0 is shown in Fig. 7.4 (c).
This is the wave-form of SHM. In Fig. 7.3, the same wave-
form was traced experimentally but here, we have traced it
theoretically by linking- SHM with circular motion through
the concept of angular frequency. The angle 6 gives the
states of the system in its vibrational cycle. For example, at
the start of the cycle 0 = 0. Half way through the cycle, is
180° ( = radians). When 0 = 270° (or 3n/2 radians), the
cycle is three-fourth completed. We call 8 as the phase of
the vibration. Thus when quarter of the cycle is completed,
phase of vibration is 90° (orn /2 radian). Thus phase is also
related with the circular motion aspect of SHM.

(ii) Instantaneous Velocity

The velocity of point P, at the instant ¢, will be directed along
the tangent to the circle at P and its magnitude will be
Ve . e (7.6)

As the motion of N on the diameter DE is due to motion of P
on the circle, the velocity of N is actually the component of
the velocity v» in a direction parallel to the diameter DE. As
shown in Fig. 7.5 (a), this component is

Ve 8in (90°- 0) = vs cos 0= x, » cos0.
Thus the magnitude of the velocity of N  or its speed v is

VEX, 0 cosl =x,mcoswt ... (7.7)

The direction of the velocity of N depends upon the value
of the phase angle 6. When ¢ is between 0° to 90° the
direction is from O to D, for © between 90° to 270° its
direction is from D to E. When 0 is between 270° to 360°, the
direction of motion is from E to D.

2

From Fig. 7.5, cos 6 = cos ZNPO = NP/OP = "°x-" g
°
Substituting the value of cas @ in Eq. 7.7
v= 28 el ol T E  E NS (7.8)
.
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As the motion of N on the diameter DE is just the replica of
the motion of the pointer executing SHM (Fig. 7.4), so
velocity of the point P or the velocity of any body
executing SHM is given by equations 7.7 and 7.8 in terms
of the angular frequency ». Eq. 7.8 shows that at the

mean position, where x = 0, the velocity is maximum and -

at the extreme positions where x = x,, the velocity is zero.

(iii) Acceleration in Terms of o

When the point P is moving on the circle, it has an
acceleration a, = X,’, always directed towards the centre O
of the circle. .

At instant t,its direction will be along PO. The acceleration of
the point Nwill be component of the accelerationa, along the
diameter DE on which N moves due to motion of P. As
shownin Fig. 7.5 (b), the value of this componentis

a,8iN0 = X,° sin 0.
Thus the accelerationaof Nis a= :g,mz sin0

and it is directed from N to O, i.e., directed towards the
mean position O (Fig. 7.5 b). In this figure sin 6 = ON/OP =
x/x,. Therefore,
= - R e
a=X0 % — = @X
xO

Comparison of Fig. 7.5 (b) and 74 (b) shows that the
direction of acceleration a and displacement x are

opposite. Considering the direction of x as reference, the
acceleration a will be represented by 52

= - (02 WL ety (79)

Eq. 7.9 shows that the acceleration is proportional to the
displacement and is directed towards the mean position
which is the characteristic of SHM. Thus the point N is
executing SHM with the same amplitude, period and
instantaneous displacement as the pointer P;. This
confirms our assertion that the motion of N is just a replica
of the pointer’s motion.

Equations 7.5 and 7.7 indicate that displacement and
velocity of the point executing SHM are determined by the
angle 0§ = wt. Note that this angle is obtained when SHM is
related with circular motion. Itis the angle which the rotating
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radius OP makes with the reference direction 00, at any
instant ¢ (Fig. 7.4 b).

The angle 6=wt  which specifies the
displacement as well as the direction of motion
of the point executing SHM is known as phase.

The phase determines the state of motion of the vibrating
point. If a body starts its motion from mean position, its
phase at this point would be 0. Similarly at the extreme

positions, its phase would be rt/2-

In Fig. 7.4 (b), we have assumed that to start with at ¢ = 0,
the position of the rotating radius OP is along OO, so that
the point N is at its mean position and the displacement at
t=0, is zero. Thus it represents a special case. In general at
=0, the rotating radius OP can make any angle ¢ with the
reference OO, as shown in Fig. 7.6 (a). In time ¢, the radius
will rotate by ot . So now the radius OP would make an

angle (ot+9) with 00, at the instant t and the
displacement ON = x at instant ¢ would be given by

ON = x = OP sin (ot +0)
=xsin(ot+e) (7.10)
Now the phase angleis of +0 je,

O0=woft+0

whent=0,0=¢. So @ is the initial phase. If we take initial

phase asr/2 or 90°, the displacement as given by Eq 7.10
is
X = X, sin (ot + 90°%)
SR TRB L. o (7.11)
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Thus Eq. 7.11 also gives the displacement of SHM, but in this
case the point N is starting its motion from the extreme
position instead of the mean position as shown in Fig. 7.6 (b).

Practically, for a simple harmonic system, consider
vibrating mass attached to a spring as shown in Fig. 7.2 (a, b
and c) whose acceleration at any instant is given by Eq. 7.2
whichis

m e
As k and m are constant, we see that the acceleration is
proportional to displacement x, andits direction is towards
the mean position. Thus the mass m executes SHM
between A and A" with x, as amplitude. Comparing
the above equation with Eq. 7.9, the vibrational angular
frequency is

® = Jz .......... (7.12)
m
The time period of the mass is
2 m
T= .m_"= 27:‘/7_ .......... (7.13)

The instantaneous displacement x of the mass as given by
Eq.75is :
X =X, 8in wt

x=xosingt
m

The instantaneous velocity v of the mass m as given by

Eq. 78is
= " 2_ g2 = ,,k 2 _ g2
V=0 4x,° - x (X, =x*)

(7.14)

(7.15)

Eq 7.15 shows that the velocity of the mass gets maximum
equal to v,, when x = 0. Thus

k

Vo = Xo
m

sl s e




then 4 N | (7.17)

The formula derived for displacement and velocity are also
valid for vertically suspended mass-spring system provided
air friction is not considered.

Example 7.1: A block weighing 4.0 kg extends a spring
by 0.16 m from its unstretched position. The block is
removed and a 0.50 kg body is hung from the same spring.
If the spring is now stretched and then released, what is its
period of vibration?

Solution:

Applied stretching force  F = kx or k= ;
F=mg=4kg x9.8 ms*=39.2kgms?=392N
o = 4kgx9.8ms? _ e
._; x=0.16m, k -———~0.16m 245kg s
Now time period T=2n %

or T=2n M—=0.285
T 245kgs *

A simple pendulum consists of a small heavy mass m
suspended by a light string of length / fixed at its upper

" I 5 end, as shown in Fig. 7.7. When such a pendulum is
(b'_,. mgcosg displaced from its mean position through a small angle 6 to
r:g ' C the position B and released, it starts oscillating to and fro

over the same path. The weight mg of the mass can be
resolved into two components: mg sin 6 along the tangent
.. ,.,"7 at B and mg cos 0 along CB to balance the tension of the
string. The restoring force at B will be

F=-mgsin®
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When 6 is small, sin6 =80

So F=ma=-mg0 RIS, (7.18)
Or a=-gb
But 9= Arc AB

/
When 6Gis small  Arc AB = OB = x, hence 0 = 3;—

Thus, a=- %’i .......... (7.19)

At a particular place ‘g’ is constant and for a given pendulum
1" is also a constant.
Therefore, % =k (a constant)

and the motion of the simple pendulum is simple harmonic.
Comparing Eq. 7.19 with Eq. 7.9

W= J;
[

As time periéd T= o
mn

Hence T=2n Jg .......... (7.20)

This shows that the time period depends orily on
the length of the pendulum and the acceleration
due to gravity. It is independent of mass.

Example 7.2: What should be he length of a simple
pendulum whose period is 1.0 second at a place where
g = 9.8 ms*?? Whatis the frequency of such a pendulum?

Solution:

Time period, T= 21:JZ
9 2
T=10s : g=98ms?

-~
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Squaring both sides

T2=4p2 L
g
o L
4n?
9.8ms? x1s?
l=—" """ =025m
” 4x3.14x3.14 2
Frequency f=i=i=1Hz
°q i

A AR A b

Let us consider the case of a vibrating mass-spring
system. When the mass m is pulled slowly, the spring is
stretched by an amount X, against the elastic restoring
force F. It is assumed that stretching is done slowly so that

acceleration is zero. According to Hooke’s law

F = kx,
When displacement = 0 force = 0
When displacement = X force = kx,
Average force F= O—‘jx-"— = %kxo

Work done in displacing the mass m through x, is
W=Fd= %kxox Xo = %k X2

This work appears as elastic potential energy of the spring.
Hence

PE. « % Eis s (7.21)

The Eq. 7.21 gives the maximum P.E. at the extreme
position. Thus

1
PE. max = 5 k x2

At any instant t, if the displacement is x, then PE. at that
instant is given by
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BE 2 - oo (7.22)

Hence the K.E. at that instant is

i
KE. of the mass = - m? = 1 mx‘,{-'ij E- x2]
2 2 m xo 4
2
KE.= + kxe? E"—z] .......... (7.23)
2 x;

Thus, kinetic energy is maximum when x = 0, i.e. when the
mass is at equilibrium or mean position (Fig. 7.8)

KE. max = % kx? (7.24):
. 4 energy
For any displacement x, the energy is partly P.E. and partly total energy
K.E. Hence,
K.E /
Ejo'a[ = P.E. + K.E. 5%
PE./\ |
= \ v'
L e o P
3 kx*+ 2kxg [1 on] X o %
Fig. 7.8
Total energy = %kxoz .......... (7.25)

Thus the total energy of the vibrating mass and spring is
constant. When the K.E. of the mass is maximum, the P.E.
of the spring is zero. Conversely, when the PE. of the
spring is maximum, the K.E. of the mass is zero. The
interchange occurs continuously from one form to the other
as the spring is compressed and released alternately.
The variation of PE. and KE. with displacement is
essential for maintaining oscillations. This periodic
exchange of energy is a basic property of all oscillatory
systems. In the case of simple pendulum gravitational P.E.
of the mass, when displaced, is converted into K.E. at the



Comparison of SHMs
Amax

> 24

equilibrium position. The K.E. is converted into PE. as the
mass rises to the top of the swing. Because of the frictional
forces, energy is dissipated and consequently, the systems
do not oscillate indefinitely.

Example 7.3: A spring, whose spring constant is
80.0Nm™ vertically supports a mass of 1.0 kg in the rest
position. Find the distance by which the mass must be

pulled down, so that on being released, it may pass the

mean position with a velocity of 1.0 ms™.

Solution:
k=80.0 Nm™ , m=1.0 kg
Since  w?= X or w= |k
m m
80Nm™  [80kgms2x m™ 4
B & =8.94
\/ Tkg J Tkg S
Let the amplitude of vibration be x,
Then V=X, 0 or Xo = %
as v=10ms" and ® =894
; : ; 1ms™'
Distance through which m is pulled = X =m =011 m
.48

v

=z

Abodyis said to be executing free vibrations when it oscillates
without the interference of an external force. The frequency
of these free vibrations is known as its natural frequency.
Forexample, a simple pendulum when slightly displaced
from its mean position vibrates freely with its natural frequency

that depends only upon the length of the pendulum.

Onthe other hand, if afreely oscillating system is subjected
to an external periodic force, then forced vibrations will
take place. Such as when the mass of a vibrating

pendulum is struck repeatedly, then forced vibrations are
produced.
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A physical system under going forced vibrations
is known as driven harmonic oscillator.

The vibrations of a vehicle body caused by the running of
cngine is an example of forced vibrations. Another example
of forced vibration is loud music produced by sounding
wooden boards of string instruments.
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Associated with the motion of a driven harmonic oscillator,
there is a very striking phenomenon, known as resonance.
It arises if the external driving force is periodic with a
period comparable to the natural period of the oscillator.

In a resonance situation, the driving force may be feeble,
the amplitude of the motion may become extra ordinarily
large. In the case of oscillating simple pendulum, if we
blow to push the pendulum whenever it comes in front of
our mouth, it is found that the amplitude steadily increases.

To demonstrate this resonance effect, an apparatus is
shown in Fig. 7.9. A horizontal rod AB is supported by two
strings Sy and S,. Three pairs of pendulums aa, bb'and cc’
are suspended to this rod. The length of each pair is the
same but is different for different pairs. If one of these
pendulums, say c, is displaced in a direction perpendicular
to the plane of the paper, then its resultant oscillatory
motion causes in rod AB a very slight disturbing metion,
whose period is the same as that of ¢. Due to this slight
motion of the rod, each of the remaining pendulums (aa;
bb',and cc’) under go a slight periodic motion. This causes
the pendulum ¢/, whose length and, hence, period is
exactly the same as that of c, to oscillate back and forth
with steadily increasing amplitude. However, the
amplitudes of the other pendulums remain small through
out the subsequent motions of ¢ and c, because their
natural periods are not the same as that of the disturbing
force due to rod AB.

The energy of the oscillation comes from the driving source.

At resonance the transfer of energy is maximum.

Thus resonance occurs when the frequency of the applied
periodic forced is equal to one of the natural frequencies of
vibration ol the forced or driven harmonic oscillator.
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Do You Know?

All structures are likely to resonate
at one or more frequencies. This
can cause problem, Itis especially
important to test all the
components in helicopters and



“interesting Information -

The collapse of Tacoma Narrow
bridge (USA) is suspected to be due
to viofent resonance oscillations,
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Graph between amplitude and time

Advantaﬁes And Disadvantages of Resonance

We come across many examples of resonance in every
day life. A swing is a good example of mechanical
resonance. It is like 2 pendulum with a single natural frequency
depending on its length. If a series of regular pushes are
given to the swing, its motion can be built up enormously. If
pushes are given irregularly, the swing will hardly vibrate.
The column of soldiers, while marching on a bridge of long span
are advised to break their steps. Their rhythmic march might
set up oscillations of dangerously large amplitude in the
bridge structure.. ,

Tuning a radio is the best example of electrical resonance.
When we turn the knob of a radio, to tune & station, we are
changing the natural frequency of the electric circuit of the
receiver, to make it equal o the transmission frequency of
the radio station. When the two frequencies match, energy
absorption is maximum and this is the only station we hear.

Another good éxample of resonance is the heating and
cooking of food very efficiently and evenly by microwave
oven (Fig.7.10). The waves produced in this type of oven
have a wavelength| of 12 cm at a frequency of 2450 MHz.
At this frequency, the waves are absorbed due to
resonance by water and fat molecules in the food, heating
them up and so cooking the food.

e R R NN ERWIND :
This is a common observation that the amplitude of an
oscillating simple pendulum decreases gradually with time
till it becomes zero. Such oscillations, in which the
amplitude decreases steadily with time, are called damped
oscillations. :

-

We know from our everyday experience that the motion of
any macroscopic ‘sysiem is accompanied by frictional
effects. While describing the motion of a simple pendulum,
this effect was completely ignored. As the bob of the
pendulum moves to and fro, then in addition to the weight
of the bob and the tension in the string, bob experiences
viscous drag due to its motion through the air, Thus simple
harmonic motion is an idealization (Fig. 7.11 a). In practice,

the amplitude of this motion gradually becomes smaller
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and smaller because of friction and air resistance because
the energy of the oscillator is used up in doing work against
the resistive forces. Fig.7.11(b)shows how the amplitude

of a damped simple harmonic wave changes with time as
compared with an ideal un-damped harmonic wave.Thus
we see that

Damping is the process whereby energy
is dissipated from the oscillating system.

An application of damped oscillations is the shock
absorber of a car which provides a damping force to
prevent excessive oscillations (Fig. 7.12).

7.10 SHARPNESS OF RESONANCE

We have seen that at resonance, the amplitude of the oscillator
becomes very large. If the amplitude decreases rapidly at a
frequency slightly different from the resonant frequency, the
resonance will be sharp. The amplitude as well as its sharpness,
both depend upon the damping. Smaller the damping, greater
will be the amplitude and more sharp will be the resonance.

A heavily damped system has a fairly
flat resonance curve as is shown in an

amplitude frequency graph in Fig. 7.13.

The effect of damping can be observed by attaching a
pendulum having light mass such as a pith ball as its bob
and another of the same length carrying a heavy mass
such as a lead bob of equal size, to a rod as shown in
Fig. 7.9. They are set into vibrations by a third pendulum
of equal length, attached to the same rod. Itis observed

that amplitude of the lead bob is much greater than that

of the pith-ball. The damping effect for the pith-ball due

to air resistance is much greater than for the lead baob.
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*  Oscillatory motion is to and fro motion about 2 mean position.
“  Periodic motion is the one that repeats itself after equal intervals of time.

* Restoring force opposes the change in shape or length of a body and is equal and
opposite to applied force.

¢ A vibratory motion in which acceleration is directly proportional to displacement from
mean position and is always directed towards the mean position is known as simple
harmonic motion.

¢ The projection of a particle moving in a circle executes SHM. Its time period Tis if .

* Phase of vibration is the quantity which indicates the state of motion of a vibrating
particle generally referred by the phase angle.

* The vibratory motion of a mass attached to an elastic spring is SHM and its time
period is T=2x J-%_ :

* The vibratory motion of the bob of simple pendulum is :éis'o SHM and its time period

is given by
T=2r JZ
g

* Inan oscillating system PE. and KE interchange and total energy is conserved.

* A body is said to be executing free oscillation if it vibrates with its gwn natural
frequency without the interference.ofapg;gtem' Bogires =

* When a freely oscillating system is subjecl’ed o an ‘égnal‘ periodic force, then
forced vibrations take place.

* Resonance is the specific response of a system to a periodic force acting with the
natural vibrating period of the system.

* Damping is the process whereby energy is dissipated from the oscillating system.

QUESTIONS

7.1 Name two characteristics of simple harmonic motion.

7.2 Does frequency depends on amplitude for harmonic oscillators?
75 Can we realize an ideal simple pendulum?
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7.4 What is the total distance travelled by an object moving with SHM in a time equal to
its period, if its amplitude is A?

7.5 What happens to the period of a simple pendulum if its length is doubled? What
happens if the suspended mass is doubled?

7.6 Does the acceleration of a simple harmonic oscillator remain constant during its
motion? Is the acceleration ever zero? Explain.

‘What is meant by phase angle? Does it define angle between maximum
displacement and the driving force?

7.8 Under what conditions does the addition of two simple harmomc motions produce a
resultant, which is also simple harmonic?

7.9 Show that in SHM the acceleration is zero when the velocity is greatest and the
velocity is zero when the acceleration is greatest?

10In relation to SHM, explain the equations;
(i) y=Asin(ot+o)
(i) a=-w’x
11 Explain the relation between total energy, potential energy and kinetic energy for a
body oscillating with SHM.
712 Describe some common phenomena in which resonance plays an important role.
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7 171f a mass spring system is hung vertically and set into oscillations, why does the
motion eventually stop?

NUMERICAL PROBLEMS

A 100.0 g body hung on a spring elongates the spring by 4.0 cm. When a certain
object is hung on the spring and set vibrating, its period is 0.568 s. What is the
mass of the object pulling the spring?

(Ans:0.20 kg)

7.7 A load of 15.0g elongates a spring by 2.00 cm. If body of mass 294 g is attached to
the spring and is set into vibration with an amplitude of 10.0 cm, what will be its
period (1) spring constant (1) maximum speed of its vibration.

[Ans: (1) 1.26s, (ii) 7.35 Nm™", (iii) 49.0 cm s

7.3 An 8.0 kg body executes SHM with amplitude 30 cm. The restoring force is 60 N
when the displacement is 30 cm. Find

(i) Period

(ii) Acceleration, speed, kinetic energy and potential energy when the
displacement is 12 cm.

[Ans: (i) 1.3 s, (i) 3.0ms? 1.4 ms”, 7.6 J, 1.44J]
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74 A block of mass 4.0kgis dropped from a height of 0.80 m on to a spring of spring

78

7.6

7.8

constant k = 1960 Nm™', Find the maximum distance through which the spring will
be compressed.

(Ans: 0.18 m)

A simple pendulum is 50.0 cm long. What will be its frequency of vibration at a place
where g = 9.8 ms??

(Ans: 0.70 Hz)

A block of mass 1.6 kg is attached to a spring with spring constant 1000 Nm™' as
shown in Fig. 7.14. The spring is compressed through a distance of 2.0 cm and the
block is released from rest. Calculate the velocity of the block as it passes through
the equilibrium position, x = 0, if the surface is frictionless.

(Ans: 0.50 ms™)
g

Fig. 7.14 Reo

A car of mass 1300 kg is constructed using a frame Supported by four springs.
Each spring has a Spring constant 20,000 Nm'. If two people riding in the car have
a combined mass of 160 kg, find the frequency of vibration of the car, when it is
driven over a pot hole in the road. Assume the weight is evenly distributed.

(Ans: 1.18 Hz)

Find the amplitude, frequency and period of an object vibrating at the end of a
spring, if the equation for its position, as a function of time, is

x=0.25 cos [;Jt
What is the displacement of the object after 2.0 s?

(Ans: 0.25 m, % Hz, 165, x=0.18 m)
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