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Learning Objectives

At the end of this chapter the students will be able to :
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Recall the generation and propagation of waves.

Describe the nature of the motions in transverse and longitudinal waves.
Understand and use the terms wavelength, frequency and speed of wave.
Understand and use the equation v="Ffa

Understand and describe Newton's formula of speed of sound.

Derive Laplace correction in Newton's formula of speed of sound for air.
Derive the formula - v=v,+ 061t

Recognize and describe the factors on which speed of sound in air depends.
Explain and use the principle of superposition.

Understand the terms interference and beats.

Describe the phenomena of interference and beats giving examples of sound
waves.

Understand and describe reflection of waves.

Describe experiments, which demonstrate stationary waves for stretched strings
and vibrating air columns.

Explain the formation of a stationary wave using graphical method.
Understand the terms node and anti-node.

Understand and describe modes of vibration of string.

Understand and descrie Doppler's effect and its causes.

Recognize the applications of Doppler's effect in radar, sonar, astronomy, satellite
and radar speed traps.
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Do You Know?

Ultrasonic waves are particularly
useful for undersea communication
and detection systems. High

radio waves, used in

W aves ftransport energy without transporting matter.

The energy transportation is carried by a disturbance, which
spreads out from a source. We are well familiar with different
types of waves such as water waves in the ocean, or gently
formed ripples on a still pond due to rain drop. When a
musician plucks a guitar-string, sound waves are generated
which on reaching our ear, produce the sensation of music.
Wave disturbances may also come in a concentrated bundle
like the shock waves from an aeroplane flying at supersonic
speed. Whatever may be the nature of waves, the
mechanism/ by-which it transports energy is the same. A
succession of oscillatory motions are always involved. The
wave is generated by an oscillation in the vibrating body and
propagation of wave through space is by means of
oscillations. The waves which propagate by the oscillation of
material particles are known as mechanicai waves.

There is another class of waves which, instead of material
particles, propagate out in space due to oscillations of
electric and magnetic fields. Such waves are known as
electromagnetic waves. We will undertake the study of
electromagnetic waves at a later stage. Here we will
consider the mechanical waves only. The waves generated
in ropes, strings, coil of springs, water and air are all
mechanical waves.'

So far we have been considering motion of individual
particles but in casc of mechanical waves, we study the
collective motion of particles. An example will help us
here. If you look at a black and whitc picture in a
newspaper with a magnifying glass, you will discover that
the picture is made up of many closely spaced dots. If you
do not use the magnifier, you do not see the dats. What you
sce is the collective effect of dots in the form of a picture.
Thus what we sce as mechanical wave is actually the efTect
of oscillations of a very large number of particles of the
medium through which the wave is passing.

Drop a pebble into water. Ripples will be produced and
spread out across the water. The ripples are the examples
of progressive waves because they carry energy across
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the water surface. A wave, which transfers energy by
moving away from the source of disturbance, is called a
progressive or travelling wave. There are two kinds of
progressive waves - transverse waves and longitudinal
waves.

Transverse and Longitudinal Waves

Consider two persons holding opposite ends of a rope or a
hosepipe. Suddenlyone person gives one up and down jerk to
the rope. This disturbs the rope and creates a hump in it which
travels along the rope towardsthe otherperson (Fig.8.1a &b).
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Fig. 8.1

When this hump reaches the other person, it causes his
- hand to move up (Fig. 8.1 ¢). Thus the energy and -
momentum imparted to the end of the rope by the first
person has reached the other end of the rope by travelling
through the rope i.e., a wave has been set up on the rope
in the form of a moving hump. We call this type of wave a
pulse. The forward motion of the pulse from one end of the
rope to the other is an example of progressive wave. The
hand jerking the end of the rope is the source of the
wave. The ropé is thé medium in which the wave moves.
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Transverse waves

Longitudinal waves

Fig. 2.3(a)

Z3Z>

A large and loose spring coil (slinky spring) can be used to
demonstrate the effect of the motion of the source in
generating waves in a medium. It is better that the
spring is laid on a smooth table with its one end fixed
so that the spring does not sag under gravity.

It'the free end of the spring is vibrated from side to side, a pulse
of wave having a displacement pattem shown in Fig. 8.2 (a)
will be generated which will move along the spring.

If the end of the spring is moved back and forth, along the
direction of the spring itself as shown in Fig. 8.2 (b), a wave
with back and forth displacement will travel along the spring
Waves like those in Fig. 8.2 (a) in which displacementof the
spring is perpendicular to the direction of the waves are
called transverse waves. Waves like those in Fig. 8.2 (b) in
which displacements are in the direction of propagation of
waves are called longitudinal waves. In this example the coil
of spring is the medium, so in general we can say that

Transverse waves are those in which particles of
the medium are displaced in a direction
perpendicular to the direction of propagation of
waves and longitudinal waves are those in which
the particles of the medium have displacements
along the direction of propagation of waves.

Both types of waves can be set up in solids. In fluids,
however, transverse waves die out very quickly and
usually cannot be produced at all. That is why, sound
waves in air are longitudinal in nature.

ISE T S

>8-'2"“", . 'l )
== b S Al

Upto now we have considered wave in the form of a pulse
which is set up by a single disturbance in a medium like the
snapping of one end of a rope or a coil spring. Continuous,
regular and rhythmic disturbances in a medium result from
periodic vibrations of a source which cause periodic waves
in that medium. A good example of a periodic vibrator is an
oscillating mass-spring system (Fig 8.3 a). We have already
studied in the previous chapter that the mass of such a
system executes SHM,
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Transverse Periodic Waves

Imagine an experiment where one endof a rope is fastened
to a mass spring vibrator. As the mass vibrates up and
down, we observe a transverse periodic wave travelling
along the length of rope (Fig. 8.3 b). The wave consists of
crests and troughs. The crest is a pattern in which the rope
is displaced above its equilibrium position, and in troughs,
it has a displacement below its equilibrium position.

As the source executes harmonic motion up and down with
amplitude A and frequency f, ideally every point along the
length of the rope executes SHM in turn, with the same
amplitude and frequency. The wave travels towards right
as crests and troughs in turn, replace one another, but the
points on the rope simply oscillates up and down. The
amplitude of the wave is the maximum value of the
displacement in a crest or trough and it is equal to the
amplitude of the vibrator. The distance between any two
consecutive crests or troughs is the same all along the
length of the rope. This distance is called the wavelength
of the periodic wave and is usually denoted by the Greek
letter lambda A (Fig. 8.3 b).

In principle, the speed of the wave can be measured by

timing the motion of a wave crest over a measured
distance. But it is not always convenient to observe the
motion of the crest. As discussed below, however, the
speed of a periodic wave can be found indirectly from its
frequency and wavelength. :

As a wave progresses, each point in the medium oscillates
periodically with the frequency and period of the source.
Fig. 8.4 illustrates a periodic wave moving to the right, as it
might look in photographic snapshots taken every /4
period. Follow the progress of the crest that started out
from the extreme left at { = 0. The time that this crest takes
to move a distance of one wavelength is equal to the time
required for a point in the medium to go through one
complete oscillation. That is the crest moves one
wavelength % in one period of oscillation T The speed v of
the crest is therefore,

distance rggvgd

9
corresponding timeinterval T
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All parts of the wave paderm move with the same speed, so
the speed of any one crest is just the speed of the wave
We can merefor‘e,ﬂay-&\at the speed v of the waves is

o
v S (8.1)

but % = f, where fis the frequency of the wave. It is the

same as the frequency of the vibrator, generating the
waves. Thus Eq. 8.1 becomes ?

A e (8.2)

| Phase Relationship between two Points on a Wave

The profile of periodic waves generated by a source
executing SHM is represented by a sine curve. Figure 8.5
shows the snapshot of a periodic wave passing through a
medium. In this figure, set of points are shown which are
moving in unison as the periodic wave passes. The points
C and C’, as they move up and down, are always in the
same state of vibration i.e., they always have identical
displacements and velocities. Alternatively, we can say that
as the wave passes, the points C ad C’! move in phase.
We may also say that C’ leads C by one time period or 2r
radian. Any point at a distance x, C lags behind by phase
angle 0= 2.%5

So is the case with points D and D’ . Indeed there are
infinitely many such points along the medium which are
vibrating in phase. Points separated from one another
through distances of A, 21, 34, ...... are all in phase with
each other. These points can be anywhere along the wave
and need not correspond with only the highest and lowest
points. For example, points such as P, P’, P” .. .
are all in phase. Each is separated from the next by a
distance A.

Some of the points are exactly out of step. For example,
when point C reaches its maximum upward displacement,
at the same time D reaches its maximum downward
displacement. At the instant that C begins to go down, D
begins to move up. Points such as these are called one
half period out of phase. Any two points separated from

one another by % 3%, 5%, ......... are out of phase.
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Longitudinal Periodic Waves

In the previous section we have considered the generation
of transverse periodic waves. Now we will see how the
longitudinal periodic waves can be generated.

Consider a coil of spring as shown in Fig. 8.6. It is
suspended by threads so that it can vibrate horizontally.
Suppose an oscillating force F is applied to its end as
indicated. The force will alternately stretch and compress
the spring, thereby sending a series of stretched regions
(called rarefaction) and compressions down the spring. We
will see the oscillating force causes a longitudinal wave to
move down the spring. This type of wave generated in Fig. 8.
springs is also called a compressional wave. Clearly in a

compressional wave, the particles in the path of wave move

back and forth along the line of propagation of the wave.

Notice in Fig. 8.6, the supporting threads would be exactly
vertical if the spring were undisturbed. The disturbance
passing down the spring causes displacements of the
elements of the spring from their equilibrium positions. In
Fig. 8.6, the displacements of the thread from the vertical PS03 40 250t
are a direct measure of the displacements of the spring =~ 'Nﬂlh-} :

elements. It is, therefore, an easy way to graph the Speedof sound in different media
displacements of the spring elements from their equilibrium

n
i
:

Displacement
D
-
4

Medi Speed

positions and this is done in the lower part of the figure. ms'
3 SPEEDOFSOUNDINAIR oo™ .,
e b e — o it i i ol Copper 3600
Sound waves are the most important examples - of e e
longitudinal or compressional waves. The speed of sound Glass 5500

waves depends on the compressibility and inertia of the 20°C

medium through which they are travelling. If the medium has Methanol 1120 .
the elastic modulus E and density p then, speed v is given by Water 483

i E 8.3) Carbon dioxide g?g

- TR vy 3 %xygan 3G

Helium 972

As seen from the table 8.1, the speed of sound is much Hydogen 1286

higher in solids than in gases. This makes sense because
the molecules in a solid are closer than in a gas and
hence, respond more quickly to a disturbance.

In general, sound travels more slowly in gases than in
solids because gases are more compressible and hence

-

167



have a smaller elastic modulus. For the calculation of
elastic modulus for air, Newlon assumed that when 2

sound wave travels through air, the temperature of the air
during compression remains constant and pressure
changes from P to (P+AP) and therefore, the volume
changes from V' to (V - AV). According to Boyle's law

PV=(P+APYV-AV) ... (8.4)
or PV =PV-PAV + VAP - APAV

The product AP AV is very small and can be neglected. So,
the above equation becomes

c i R gl |t
PAV = VAP Y AV
3 AP ). " X
The expression [AV ] is the elastic modulus E at constant
. For-Youe information " temperature. So, substituting P for E in equation 8.3, we
Values of constant get Newton’s formula for the speed of sound in air. Hence
Types of gas Y P

Monoatomic 1.67 VST - ardgntiessmess (8.5)

Diatomic 1.40 .
Polyatomic 1.29 On substituting the values of atmospheric pressure and

density of air at S.T.P. in equation 8.5, we find that the
speed of sound waves in air comes out to be 280 ms”’,
whereas its experimental value is 332 ms™.

To account for this difference, Laplace pointed out that the
compressions and rarefactions occur so rapidly that heat of
compressions remains confined to the region where it is
generated and does not have time to flow to the
neighbouring cooler regions which have undergone an
expansion. Hence the temperature of the medium does not
remain constant. In such case Boyle's law takes the form

PV'=Constant ... (8.6)

o Molar specific heat of gas at constant pressure
~ Molar specific heat of gas at constant volume

where
If the pressure of a given mass of a gas is changed from P

to (P + AP) and volume changes from V to (V- AV), then
using Eq. 8.6
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PV = (P+AP) (V- AV)'

~ ¥
PV = (P+ APV’ U%}

Applying Binomial theorem

i
AV AV
.—— | = 1-y—+negligible terms
[ v ] v eglig
A
Hence P=(P+AP)[1'Y VX]
AV AV
or P=P-yP—+AP-y AP—
% L AT
AV |. o P
where [y AP V—J is negligible. Hence, we have ¥ ForYourgnfarmation s
~ F¥yRanges of Hearing - 3
AV Organisms e
0= -YP—+AP ()
v Dolphin 150 - 150,000
s Bat 1000 — 120,000
or —— =y P=E Cat - 8070000
A\y Dog 15 - 50,000
vV Human 20 - 20,000

AP
Thus elastic modulus {—J equals YP.

Y

Hence, substituting the value of elastic modulus in Eq. 8.3,
we get Laplace expression for the speed of sound in a gas

v= J%F .......... (8';)

For air ¥=14 soat S.T.P.

V= «]1.4 x280ms '= 333ms

This value is very close to the experimental value.
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Effect of Variation of Pressure, Density and

Temperature on the Speed of Sound in a Gas

!, Effect of Pressure: Since density is proportional
to the pressure, the speed of sound is not affected by a
variation in the pressure of the gas.

<. Effect of Density: At the Same temperature and
pressure for the gases having the same value of Y, the
Speed is inversely proportional to the square root of
their densities Eq.8.7. Thus the speed of sound in
hydrogen is four times its speed in oxygen as density
of oxygen is 16 times that of hydrogen.

3. Effect of Temperature: When a gas is heated at
constant pressure, its volume is increased and hence
its density is decreased. As

e /LP
P

So, the speed is increased with rise in temperature,

Let

Vo = Speed of sound at 0 °C + P, = Density of gas at 0 °C
vt = Speed of sound at ¢ °C » Py =Density of gas at ¢ °C

then Vy = ’1’3 and v, = ,L—P
1

48 \
Hence, s f’;—: (8.8)
) [

We have studied the volume expansion of gases in
previous classes. |f Vo is the volume of a gas at
temperature 0 °C ang Viis volume at ¢ °C, then

Vi=V,(1+ By
Where B is the coefficient of volume expansion of the gas.

For all gases, its valye is about % Hence

73"

:: t
Ves Vo [1 ¥ 273}
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Since Volume = .
density
m m : t
Hen b S5 e
5 P t P o [ 273}
o t : 273- :
Putting the value of p, in equation 8.8 we have, PR N
. £ 1 f X
AR T, D a TV AW (8.9) & N\

273 ‘ ( ( (&4\\'
| //

W

\ / ‘

or "—'=1’273* gy K i bt (8.10) \\\\,// y
Vo 273 5 \_ N/

where T and T, are the absolute ‘temperatures

corresponding to t °C and 0 °C respectively. Thus, the SR e o s
speed of sound varies directly as the square root of
absolute temperature \ S SHodk wWave
Expanding the R.H.S. of equation (8.9), using Binomial v s
theorem and neglecting higher powers, we have / / ' \ S
P { g %
e 1+_t__. or v, = vV, * Vol \ \\ (\ 7/
Vo 546 546 e W g
As vo =332 ms’ \\\:,‘j
putting this value in the 2™ factor ¥
Faster than the speed of sound
332 -
Then VB +——it ;
546 What happens when a jet plane
like Concorde flies faster than the
or Y g & o gl Bl e
sound energy sweeps over the
ground as a supersonic
passes overhead. It is known as
sonic boom.

Example 8.1: Find the temperature at which the velocity
of sound in air is two times its velocity at 10 °C.

Solution: 10°C=10°C+273=283K
Suppose at T K, the velocity is two times its value at 283 K.
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Since Zea_ = Smv
7
fi - Tt = f—=2
Therefore e 1/ 263K
or - T=1132 K or 859 °C

So far, we have considered single waves. What happens
when two waves encounter each other in the same
medium? Suppose two waves approach each other on a
cail of spring, one travelling towards the right and the other
travelling towards left. Fig. 8.7 shows what you would see
happening on the spring. The waves pass through each
other without being modified. After the encounter, each
wave shape looks just as it did before and is travelling
along just as it was before.

This phenomenon of passing through each other
unchanged can be observed with all types of waves. You
can easily see that it is true for surface ripples.

But what is going on during the time when the two waves
overlap? Fig. 8.7 (c) shows that the displacements they
procduce just add up. At each instant, the spring's
displacemenf at any point in the overlap region is just the
sum of the displacements that would be caused by each of
the two waves separately.

Thus, if a particle of a medium is simultaneously acted
upon by n waves such that its displacement due to each of
the individual n waves RS M 3B, i sy Yo, then the
resultant displacement of the particle, under the
simultaneous action of these n waves is the algebraic’sum

of all the displacements Le.,

This is called principle of superposition.
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Again, if two waves which cross each other have
.opposite phase, their resultant displacement will be

Y=Yyi-)e

Particularly if y» = y2 then result displacement Y= 0.
Principle of superposition leads to many interesting
phenomen2a with waves.

- Two waves having same frequency and
travelling in the same direction (Interference).

i) Two waves of slightly different frequencies and
travelling in the same direction (Beats)

Two waves of equal frequency travelling in
opposite direction (Stationary waves).

Superposition of two waves having the same frequency
and traveling in the same direction results in a
phenomenon called interference.

Audio generator

: “An experimental set up to observe interference effect in - r_ _______________
_sound waves is shown in Fig. 8.8 (a).

Fig. 8.8 1(b)

Interference of sound waves
Points P,, P., P, are points of constructive interference.
Points P, and P, are points of destruclive interference.

Two loud speakers Si and S, act as two sources of
harmonic sound waves of a fixed frequency produced by
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Fig. 8.8(c)

Constructive Interferance
WM‘W on
the CRO screen

- Fig. 8.8(d)

An audio generator. Since the two speakcrs are driven from
the same generator, they vibrate in phase. Such sources of
waves are called coherent sources. A microphone attached
0 a sensitive cathode ray oscilloscope (CRO) acts as a
detector of sound waves. The CRO is a device to display
the input signal into waveform on its screcn. The
microphone is placed at various points, turn by turn, in
front of the loud speakers as shown in the Fig. 8.8 (b).

At points P;, Ps and P; a large signal is seen on the CRO
[Fig. 8.8(c)], whereas at points P, and P, no signal is
displayed on CRO Screen [Fig. 8.8 (d)).This effect is

meets a rarefaction. So, the displacement of two waves
are added up at these points and a large resultant
displacement s produced which is seen on the CRO
screen Fig. 8.8 (c).

. Now from Fig. 8.8 (b), we find that the path difference AS

between the waves at the point P, is
AS=8,P,-S,P, or AS =4l) - ath=1

Similarly at points P; and Ps, path difference is zero and -
respectively.

Whenever pith difference is .an integral multiple of
wavelength, i i
called constructive interference.

Therefore, the condition for constructive interference can
be written as

o e (8.12)
where n=0,+1 +2, - S,

At points P, and P4, compression meets with a rarefaction,
so that they cancel each others effect. The resultant
displacement becomes zero, as shown in [Fig. 8.8(d)].

Now let us calculate the path differene between the
waves at points P, and Ps. For point Py

174



AS=S,P,-SP, or AS=4A-3 %;ﬁ %x

* o

' 1
Similarly at P4 the path difference is — s A.

So, at points where the displacements of two waves cancel
each other's effect, the path difference is an odd integral
multiple of half the wavelength. This effect is called
destructive interference.

Therefore, the condition for destructive interference can be
writlen as

AS = (2n +1) % = e (3.13)‘

where n=0, 1, £2, #3,.2008 §

iy

Tuning forks give out pure notes (single frequency). If two
. tuning forks A and B of the same frequency say 32Hz are
sounded separately, they will give out pure notes. If they are
sounded simultaneously, it will be difficult to differentiate the
notes of one tuning fork from that of the other. The sound
waves of the two will be superposed on each other and will
be heard by the human ear as a single pure note. If the
tuning fork B is loaded with some wax or plasticene, its
frequency will be lowered slightly, say it becomes 30Hz.

If now the two tuning forks are sounded together, a note of
alternately increasing and decreasing intensity will be heard.
This note is called beat note or a beat which is due to
interference between the sound waves from tuning forks A
and B. Fig. 8.9 (a) shows the waveform of the note emitted
from a tuning fork A. Similarly Fig. 8.9 (b) shows the
waveform of the note emitted by tuning fork B. When both
the tuning forks A and B are sounded together, the resultant
waveform is shown in Fig. 8.9 (c).

Fig. 8.9 (c) shows how does the beat note occur. At some instant
X the displacement of the two waves is in the same direction.
The resultant displacement is large and a loud sound is heard.
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After 1/4s the displacement of the wave due to one tuning fork
iS opposite to the displacement of the wave due to the other
tuning fork resulting in a minimum displacement at Y, hence,
faint sound or no soundis heard.

Another 1/4 s later the displacements are again in the
same direction and a loud sound is heard again at Z.

This means a loud sound is heard two times in each
second. As the difference of the frequency of the two
tuning forks is also 2 Hz so, we find that

Number of beats per second is equal to the difference
between the frequencies of the tuning forks.

When the difference between the frequencies of the two
sounds is more than about 10 Hz, then it becomes difficult
to recognize the beats.

One can use beats to tune a string instrument, such as piano
or violin, by beating a note againsta note of known frequency.
The string can then be adjusted to the desired frequency by
tightening or looseningit until no beats are heard.

Example 8.2: A tuning fork A produces 4 beats per
second with another tuning fork B. It is found that by
loading B with some wax, the beat frequency increases to
6 beats per second. If the frequency of A is 320 Hgz,
determine the frequency of B when loaded.

Solution: Since the beat frequency is 4, the frequency
of B is either 320 + 4 = 324 Hz or 320 - 4 = 316 Hz. By
loading B, its frequency will decrease. Thus if 324 Hz is the
original frequency, the beat frequency will reduce. On the
other hang, if it is 316 Hz, the beat frequency will increase
which is the case. So, the original frequency of the tuning
fork B is 316 Hz and when loaded, itis 316 - 2 = 314 Hz.
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In an extensive medium, a wave travels in all directions
from its source with a velocity depending upon the
properties of the medium. However, when the wave comes

176



across the boundary of two media, a part of it is reflected
back. The reflected wave has the same wavelength and
frequency but its phase may change depending upon the
nature of the boundary.

Now we will discuss two most common cases of reflection
at the boundary. These cases will be explained with the
help of waves travelling in slinky spring. (A slinky spring is
a loose spring which has small initial length but a relatively
large extended length).

One end of the slinky spring is tied to a rigid support on a
smooth horizontal table. When a sharp jerk is given up to the
free end of the slinky spring towards the side A, a
displacement or a crest will travel from free end to the
boundary (Fig.8.10 a). It will exert a force on bound end
towards the side A. Since this end is rigidly bound and acts
as a denser medium, it will exert a reaction force on the
spring in opposite direction. This force will produce
displacement downwards B and a trough will travel
backwards along the spring (Fig.8.10 b).

From the above discussion it can be concluded that
whenever a transverse wave, travelling in a rarer medium,
encounters a denser medium, it bounces back such that the
direction of its displacement is reversed. An incident crest
on reflection becomes a trough.

This experimentis repeated with a little variation by attaching
one end of 2 light string to a slinky spring and the other end to
the rigid support as shown in Fig. 8.11. if now the spring is
given a sharp jerk towards A, a cres! travels along the spring
as shown in Fig. 8.11. When this crest reaches the spring-
string boundary, it exert a force on the string towards the side
A. Since the string has a smail mass as compared to spring,
it does not oppose the motion of the spring. The end of the
spring, therefore, continues its displacement towards A. The
spring behaves as if it has been plucked up. In other words a
crest is again created at the boundary of the spring-string
system, which travels backwards along the spring. From this
it can be concluded that when a transverse wave travelling in
a denser medium, is reflected from the boundaty of a rarer
medium, the direction of its displacement remains the same.
An incident crest is reflected as a crest. We are already
familiar with the fact that the direction of displacement is
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reversed when there is change of 180° in the phase of
vibration. So, the above conclusion can be written as follows.

i) If a transverse wave travelling in a rarer medium
is incident on a denser medium, it is reflected
such that it undergoes a phase change of 180°.

i) If a transverse wave travelling in a denser
medium is incident on a rarer medium, it is
reflected without any change in phase.

Now let us consider the Superposition of two waves
moving along a string in opposite directions. Fig. 8.12
(a,b) shows the profile of two such waves at instants
t=0,T/4, 3/4T and T, where T is the time period of the
wave. We are interested in finding out the displacements
of the points 12,3456 and 7 at these instants as the
waves superpose. From the Fig. 8.12 (a,b), it is obvious

t=3T/4 =T

:«
.'+

=0 1=T/4 =T/2 t=3T7/4 t=T
o e~ Tt L VR T i g S GOSE SRR T R always
1 3 5 7 1 3 (] 7 1 3 5 7 1 3 ] 7 1 3 S 7 at rest
t=0 T t=T/4 T 1=3T/4 =T T
(d) AJ,-- .................... 5 -J.---._-  always

1 877 oscillating

ig. 812
™ that the points 12,3, etc are distant 4 /4 apart, . being

the wavelength of the waves. We can determine the
resultant displacement of these points by applying the
principle of superposition. Fig 8.12 (¢) shows the
resultant displacement of the points 1,3,5 and 7 at the
instants t = 0, 7/4, T/2, 3T/4 and T. It can be seen that
the resultant displacement of these points is always
zero. These points of the medium are known as nodes.
Fig. 8.12 (c) shows that the distance between two
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consecutive nodes is A /2. Fig. 8.12 (d) shows the
resultant displacement of the points 2,4 and 6 at the
instants t = 0, T/4, T/2, 3T/4 and T. The figure shows
that these points are moving with an amplitude which is
the sum of the amplitudes of the component waves.
These points are known as antinodes. They are situated
midway Between the nodes and are also A/2 apart. The
distance between a node and the next antinode is a4,
Such a pattern of nodes and anti-nodes is known as a
stationary or standing wave.

Energy in a wave moves because of the motion of the
particles of the medium. The nodes always remain at rest,
so energy cannot flow past these points. Hence energy
remains ‘“standing” in the medium between nodes,
although it alternates between potential and kinetic forms.
When the antinodes are all at their extreme displacements,
the energy stored is wholly potential and when they are
simultaneously passing through their equilibrium positions,
the energy is wholly kinetic.

An easy way to generate a stationary wave is to superpose
a wave travelling down a string with its reflection travelling
in opposite direction as explained in the next section.

Consider a string of length / which is kept stretched by
clamping its ends so that the tension in the string is F. If
the string is plucked at its middle point, two transverse
waves will originate from this point. One of them will move
towards the left end of the string and the other towards the
right end. When these waves reach the two clamped ends,
they are reflected back thus giving rise to stationary waves.
As the two ends of the string are clamped, no motion will
take place there. So nodes will be formed at the two ends
and one mode of vibration of the string will be as shown in
Fig. 8.13 with the two ends as nodes with one antinode in
between. Visually the string seems to vibrate in one loop.
As the distance between two consecutive nodes is one half
of the wavelength of the waves set up in the string, so in

this mode of vibration, the length / of the string is

1=L21.' PPl NS (8.14)




where 2., is the wavelength of the waves set up in this
mode, '

The speed v of the waves in the string depends upon the
lension F of the string and m, the mass per unit length of

the string. It is given by v=Jz ........... (8.15)
m

Knowing the speed v and wavelength 5.4, the frequency f,
of the waves is given by
v

TS0 PR e - (8.16)
'S 21
F

;
Substituting the value of y, £, =§ T S (8.17)

Thus in the first mode of vibration shown in Fig. 8.13,
waves of frequency f, only will be set up in the given string

If the same string is plucked from one quarter of its length,

f1=

vibrates in two loops. This particular configuration of nodes
and antinodes has developed because the string was
plucked from the position of an antinode. As the distance
between two consecutive nodes is half the waveléngth, so
the Fig. 8.14 shows that the length / of string is equal to
the wavelength of the waves set up in this mode. If ., is the
measure of wavelength of these waves, then,

AT Sl Stien. o (8.18)

A comparison of this equation with Eq. 8.14 shows the
wavelength in this case is half of that in the first case.

Eq. 8.16 shows that the Speed of waves depends upon the

If £, is frequency of vibration of string in its second mode,
then by Eq. 8.2

V=lhxhy=f, ) or f2=ll (8.19)

Comparing it with Eq. 8.16, we get
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fg = 2f1

Thus when the string vibrates in two loops, its frequency
becomes double than when it vibrates in one loop.

Similarly by plucking the string properly, it can be made to
vibrate in 3 loops, with nodes and antinodes as shown in
Fig. 8.15.

In this case the frequency of waves will be f; = 3 f; and the
wavelength will be equal to 2//3. Thus we can say that if the
string is made to vibrate in n loops, the frequency of
stationary waves set up on the string will be

i P W TR e 3 (8.20)
and the wavelength
ha= 2y 8.21)
n

It is clear that as the string vibrates in more and more
loops, its frequency goes on increasing and the
wavelength gets correspondingly shorter. However the
product of the frequency and wavelength is always equal
to v, the speed of waves.

The above discussion, clearly establishes that the
stationary waves have a discrete set of frequencies f;, 2f;,
3f, ....., nf; which is known as harmonic series. The
fundamental frequency f; corresponds to the first harmonic,
the frequency f> = 2 f; corresponds to the second harmonic
and so on. The stationary waves can be set up on the
string only with the frequencies of harmonic series
determined by the tension, length and mass per unit length
of the string. Waves not in harmonic series are quickly
damped out.

The frequency of a string on a musical instrument can be
changed either by varying the tension or by changing the
length. For example, the tension in guitar and violin strings is
varied by tightening the pegs on the neck of the instrument.
Once the instrument is tuned, the musicians vary the
frequency by moving their fingers along the neck, thereby
changing the length of the vibrating portion of the string.

181




Do You Know?

Astanding-wave pattern is formed
when the length of the string is an
integral multiple of half wave-
length; otherwise no standing
wave is formed.

PR,
» iy
fF

"A-

In an organ pipe, the primary
driving mechanism is wavering,
sheet like jet of air from flute-slit,
which interacts with the upper lip
and the air column in the pipe to
maintain a steady oscillation,

Example 8.3; A steel wire hangs vertically from a fixed
point, supporting a weight of 80 N at its lower end. The
diameter of the wire is 0.50 mm and its length from the
fixed point to the weight is 1.5 m. Calculate the
fundamental frequency emitted by the wire when it is
plucked?

(Density of sieel wire = 7.8 x 10° kgm™)
Solution:
Volume of wire = Length x Area of cross section
Mass = Volume x Density
therefore
Mass of wire = Length x Area of cross section x Density
So, mass per unit length m is given by

m =Density x Area of cross section
Diameter of the wire = D = 0.50 mm = 05x10°m

Radius of the wire = r = g =0.25x 10°m

Area of cross sectien of wire = zr°=3.14 x (0.25x 10° m)*?
F=w
\therefore
m =78 x 10 kgm™x 3.14 x (0 25 x 10 m)?
m =153 x 10°kgm’
Weight = 80 N = 80 kgms™~
Using the equation (8.17), we get

I |F
= s
: 2/ |\Mm
1 80 kgms >
fi = % il 90 —~ =768
2x1.5m V4535403 kgm'!
or f, =76 Hz. )

= ~ PR SIS, EU BBty B3 el 5 0
Stationary waves can be set in other media also, such as air
column. A common example of vibrating air column is in the

PO R R
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organ pipe. The relationship between the incident wave and
the reflected wave depends on whether the reflecting end of
the pipe is open or closed. If the reflecting end is open, the
air molecules have complete freedom of motion and this
behaves as an antinode. If the reflecting end is closed, then
it behaves as a node because the movement of the
molecules is restricted. The modes of vibration of an air
column in a pipe open at both ends are shown in Fig. 8.16.

In figure, the longitudinal waves set up in the pipe have been
represented by transverse curved lines indicating the varying
amplitude of vibration of the air particles at points along the
axis of the pipe. However, it must be kept in mind that air
vibrations are longitudinal along the length of the pipe. The
wavelength'2,'of nth harmonic and its frequency 'f,' of any
harmonic is given by

(8.22)

=.gl.. » = l—"
)"n n fu k—

where V' is the speed of sound in air and /' is the length of
the pipe. The equation 8.22 can also be written as

L=xnt, (8.23)

If a pipe is closed at one end and open at the other, the closed
end is a node. The modes of vibration in this case are shown
in Fig. 8.17.

srsasesann

In case of fundamental note, the distance between a node
and antinode is one fourth of the wavelength,

A

Hence, = —41 or hi=41
Since v="Fi
Hence pimatow

k’ 4/

It can be proved that in a pipe closed at one end, only odd
harmonics are generated, which are given by the equation
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where =3B, guws.

This shows that the Pipe, which is open at both ends, is
richer in harmonics.

Example 8.4: A pipe has a length of 1 m. Determine the
frequencies of the fundamental and the first two harmonics
(@) if the pipe is open at both ends and (b) if the pipe is
closed at one end.

(Speed of sound in air = 349 ms’)

Solution:
-1
a) f;:ﬂr: L@nls_:' 1703'1:170 Hz
2! 2X1m
f2=2f.=2x17OHz=340Hz
and f3=3f1=3x170Hz=510Hz
-1
b) S L SN Hz

4/ 4 X1m
In this case only odd harmonics are present, so
5=3f=3x85Hz =255 Hz
and =5f=5x85Hz =425 Hz

8.11 DOPPLER EFFECT

An important phenomenon observed in waves is the
Doppler effect. This effect shows that if there is socme
relative motion between the source of waves and the
observer, an apparent change in frequency of the waves is
observed.

This effect was observed by Johann Doppler while he was
observing the frequency of light emitted from distant stars.
In some cases, the frequency of light emitted from a star
was found to be slightly different from that emitted from &
similar source on the Earth. He found that the change in
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frequency of light depends on the motion of star relative to
the Earth. /

This effect can be observed with sound waves also. When
an observer is standing on a railway platform, the pitch of
the whistle of an approaching locomotive is heard to be
higher. But when the same locomotive moves away, the
pitch of the whistle becomes lower.

The change in the frequency due to Doppler effect can be
calculated easily if the relative motion between the source
and the observer is along a straight line joining them.
Suppose v is the velocity of the sound in the medium and
the source emits a sound of frequency f and wavelength i .
If both the source and the observer are stationary, then the

" 3 4
waves received by the observer in one second are f = T If

an observer A moves towards the source with a velocity u,
(Fig. 8.18), the relative velocity of the waves and the
observer is increased to (v +u,). Then the number of
waves received in one second or modified frequency fa is

Av+ u,
A

fA=

Putting the value of % = —v-, the above equation becomes

f
PN (7 7 etk i (0B e
fa=fl—=| PN ARSI ¢ &)
A Ak R W b e

For an observer B receding from the source (Fig. 8.19),
the relative velocity of the waves and the observer is
diminished to (v - u.). Thus the observer receives waves at
a reduced rate. Hence, the number of waves received in

fv -u
one second in this case is L 5 "j

If the modified frequency, which the observer hears, is f;
then
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moving with
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from stationary observer
increased

C hears an
D hears a

Observer C
seee)) @
L]
ObsU

:

l

‘v~q | 'v-u;, ‘
or fa= —v/,J-) -f[ s ] .......... (8.26)

Now, if the source is moving towards the observer with
velocity us (Fig. 8.20), then in one second, the waves are
compressed by an amount known as Doppler shift

represented by aj.

The compression of waves is due to the fact that same
number of waves are contained in a shorter space
depending upon the velocity of the source.

The wavelength for observer C is then
Ao= A <AL

o 30

For the observer D, there will an increase in the

. wavelength given by;
-

AD= A +AL

)'D= Z+i - V‘us
. f

The modified frequency for observer C is then

| fy = L{ £ Jf .......... (8.27)
- & z-c V-u

and for the observer D will be
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B i =R R R (8.28)
Ap \V*ug

This means that the observed frequency increases when
the source is moving towards the observer and decreases
when source is moving away from the observer.

Example 8.5: A train is approaching a station at
g0kmh 'sounding a whistle of frequency 1000 Hz. What will
be the apparent frequency of the whistle as heard by a
listener sitting on the platform? What will be the apparent
frequency heard by the same listener if the train moves
away from the station with the same speed?

£ -1
spoe o scun=240ms"

acoustie

Solution: couping
: gl T, R
N el
Frequency of source = f, = 1000 Hz I © cociiomesd
:r;;mmd’ L signal
Speed of sound = 340 ms™
plood vessel
Speed of train = u, = 90 kmh™' = 25 ms”' ive R R Bihenc 1
When train is a ching towards the list th i s i Ulmomd i ‘”"m‘-i"‘ e
S o
en train is approaching towards the stener, then using - st 4
the relation directad towards the artery and
receiver detects the back
) v ‘ 'y depends on the velocity
f'= [V u]f of flow of the blood
Ty

-1
fr= e x 1000 Hz =1079.4 Hz
340ms ' —25ms”"

When train is moving away from the listener, then using

the relation
()
v+u
sl
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.
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§ ]

340ms’
340ms '+ 25ms”

f*"=

1J X1000Hz= 931 5Hz

Applications of Doppler Effect

Doppler effect is also applicable to electromagnetic waves.
Cne of its important applications is the radar system, which
uses radio waves to determine the elevation and speed of
an aeroplane. Radar is a device, which transmits and
receives radio waves. If an aeroplane approaches towards
the radar, then the wavelength of the wave reflected from
aeroplane would be shorter and if it moves away, then the
wavelength would be larger as shown in Fig. 8.21.
Similarly speed of satellites moving around the Earth can
aiso be determined by the same principle.

Sonar is an acronym derived from "Sound navigation and
ranging". The general name for sonic or ultrasonic underwater
echo-ranging and echo-sounding system. Sonar is the name
of a technigue for detecting the presence of objects
underwater by acoustical echo.

In Sonar, "Doppler detection” relies upon the relative speed
of the target and the detector to provide an indication of the
target speed. It employs the Doppler effect, in which an
apparent change in frequency occurs when the source and
the observer are in relative motion to one another, Its known
military applications include the detection and location of
submarines, control of antisubrnarine weapons, mine hunting
and depth measurement of sea. :

light from the star with light from a laboratory source, the
Doppler shift of the star's light can be measured. Then the
speedof the star can be calculated.

Stars moving towards the Earth show a blue shift. This is
because the wavelength of light emitted by the star are
shorter than if the star had been at rest. So, the spectrum is
shifted towards shorter wavelength, i.e., to the blue end of
the spectrum (Fig. 8.22),
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Stars moving away from the Earth show a red shift. The Do You Know?
emitted waves have a longer wavelength than if the star had S8

been at rest. So the spectrum is shifted towards longer
wavelength, i.e., towards the red end of the spectrum.
Astronomers have also discovered that all the distant
galaxies are moving away from us and by measuring their
red shifts, they have estimated their speeds.

Another important application of the Doppler shift using
electromagnetic waves is the radar speed trap.
Microwaves are emitted from a transmitter in short bursts.
Each burst is reflected off by any car in the path of
microwaves in between sending out bursts. The transmitter
is opened to detect reflected microwaves. If the reflection
is caused by a moving obstacle, the reflected microwaves
are Doppler shifted. By measuring the Doppler shift, the
speed at which the car moves is calculated by computer

programme. g;%"l;mcmn and find food by

'SUMMAR

Waves carry energy and this energy is carried out by a disturbance, which spreads
out from the source.

« |f the particles of the medium vibrate perpendicular to the direction of propagation of
the wave, then such wave is called transverse wave, e.g. light waves.

« If the particle of the medium vibrate parallel to the direction of propagation of the
wave, then such wave is called longitudinal wave, e.g. sound waves.

« If a particle of the medium is simultaneously acted upon by two waves, then the
resultant displacement of the particle is the algebraic sum of their individual
displacements. This is called principle of superposition.

W.hen two waves meet each other in a medium then at some points they
reinforce the effect of each other and at some other points they cancel each other's
effect. This phenomenon is called interference.

The periodic variations of sound between maximum and minimum loudness are
called beats.

Stationary waves are produced in a medium, when two identical waves travelling in
opposite directions interfere in that medium

The apparent change in the pitch of sound caused by the relative motion of either the
source of sound or the listener is called Doppler effect.
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84

8.5
8.6
8.7
8.8

8.9

[ QUESTIONS

which trace represents the loudest note?
which trace represents the highest frequency?

A AN EASEISS

Fig. 8.23 A B

Is it possible for two identical waves travelling in the same direction along a string
logive rise to a stationary wave?

A wave is produced along a stretched string but some of its particles pPermanently
show zero displacement. What type of wave is it 7

Explain the terms crest, trough, node and antinode.
Why does sound travel faster in solids than in gases?
How are beats useful in tuning musical instruments?
When two notes of frequencies f; and f, are sounded together, beats are formed. If
fi > £, , what will be the frequency of beats?
o 1
D  h+h if) E(ﬁ"'ﬁ)
. 1
i) fi - f, iv) E (f1 = fz)

As a result of a distant explosion, an observer senses a ground tremor and then
hears the explosion. Explain the time difference.

£.10 Explain why sound travels faster in warm air than in cold air.

8.17 How should a soynd source move with respect to an observer so that the frequency

of its sound does not change?
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8.3

8.4

(a)
(b)

NUMERICAL PROBLEMS

The wavelength of the signals from a radio transmitter is 1500 m and the frequency is
200 kHz. What is the wavelength for a transmitter operating at 1000 kHz and with what
speed the radio waves travel?

(Ans: 300 m, 3 x 10° ms™)

Two speakers are arranged as shown in Fig. 8.24. The distance between them is 3m
and they emit a constant tone of 344 Hz. A microphone P is moved along a line
parallel to and 4.00 m from the line connecting the two speakers. Itis found that tone
of maximum loudness is heard and displayed on the CRO when microphone is on
the centre of the line and directly opposite each speakers. Calculate the speed of
sound. 2

LI

Fig. 8.24

(Ans: 344ms )

A stationary wave is established in a string which is 120 cm long and fixed at both
ends. The string vibrates in four segments, at a frequency of 120 Hz. Determine its
wavelength and the fundamental frequency?

(Ans: 0.6 m, 30 Hz)

The frequency of the note emitted by a stretched string is 300 Hz. What will be the
frequency of this note when;

the length of the wave is reduced by one-third without changing the tension.
the tension is increased by one-third without changing the length of the wire.
(Ans: 450 Hz, 346 Hz)

An organ pipe has a length of 50 cm. Find the frequency of its fundamental note
and the next harmonic when it is

open at both ends.
closed at one end.
(Speed of sound = 350 ms™)
[Ans: (a) 350 Hz, 700 Hz, (b) 175 Hz, 525 Hz]
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a)
b)

A church organ consists of pipes, each open at one end, of different lengths. The
minimum length is 30 mm and the longest is 4 m. Caiculate the frequency range of
the fundamental notes.
(Speed of sound = 340 ms™)
(Ans: 21 Hz to 2833 Hz)

Two tuning forks exhibit beats at a beat frequency of 3 Hz. The frequency of one
fork is 256 Hz. Its frequency is then lowered slightly by adding a bit of wax to one
of its prong. The two forks then exhibit a beat frequency of 1 Hz. Determine the
frequency of the second tuning fork.

(Ans: 253 Hz)

Two cars P and Q are travelling along a motorway in the same direction. The leading
car P travels at a steady speed of 12 ms™'; the other car Q, travelling at a steady speed
of 20 ms™, sound its hom to emit a steady note which P's driver estimates, has a
frequency of 830 Hz. What frequency does Q's own driver hear?

(Speed of sound = 340 ms™)

(Speed of sound = 340 ms™)
(Ans: 17.9ms™, 448 m)

' The absorption spectrum of faint galaxy is measured and the wavelength of one of

the lines identified as the Calcium a line is found to be 478 nm. The same line has
a wavelength of 397 nm when measured in a laboratory.

Is the galaxy moving towards or away from the Earth?
Calculate the speed of the galaxy relative to Earth.

. (Speed of light = 3.0 x 10° ms™)

[Ans: (a) away from the Earth, (b) 6.1 x 107 ms’']
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