Matrices and
Determinants

2.1 Matrices

Matrix is a Latin word which means a place where something develops or
originates.

J. J. Sylvester (1814-1897), was the first British mathematician, who
formed squares containing rows and columns which he extracted from a
rectangular arrangement of objects and called it a matrix (plural matrices).

Arthur Cayley (1821-1895) developed the theory of matrices and used it
in algebra of matrices.

Matrices are used to solve the system of linear equations. These have wide
applications in the fields of mathematics, statistics, engineering, physical and
social sciences also in other various disciplines.

2.1.1 Recall the concept-of

e a matrix and\its notation

e order ofja\matrix

e equality of two matrices

(a) A matrix and its notation
A rectangular array of numbers, symbols, or expressions, arranged
in rows and columns is called a matrix.

Matrices are generally denoted by capital letters of English alphabet.
Small letters of English alphabet or numbers generally denote its elements or
entries.

The following notations are used to enclose the elements of a matrix.

[ 0)

Following are the examples of matrices:

a=[7]. B=[é ; g, C=[3ii _zii]andDz[Z Z



The general form of a matrix ‘A’ with ‘m’ rows and n’ columns is

represented as follows: jth column
" aqq aqy a13 alj aln ]
Az; Gz Az azj Qzn
az; Qzp Aazz asj a3n
A= : : : ST S /ith row
ai; Qjp Qi3 al] am‘r
Laml Q2 Apz o amj v Qpnd

It is noted that the element q;;is lying on the intersection of the it" row
and j column of matrix A. It is referred to as the (i, j/)th element. Hence, the

above given matrix A can be represented by A = [ai j] o)

where i=1,2,3,..,mandj=1,2,3,..,n
2.1.1 (b) Order of a matrix

The order or dimension of a matrix having m rows and n columns is
denoted by m X n (read as m by n).

A matrix of order m X n can be written as:
a11 a12 s aln

Ami Amz  Amn
Examples:
1 2 i 4 7i
(i) is a = 2X 2 matrix (i) |2i 5i 8i|is a3 x 3 matrix
13 4 . . :
3i 60 9i
or matrix of order 2. or matrix of order 3.
[
(iii) | 2i| is a matrix of order 3 x 1. (iv) [1 2 3]is a matrix of order 1 x 3.
K}

2.1.1 (c) Equality of two matrices

Two matrices A and B are said to be equal if they have the same order

or dimension and the corresponding elements are equal.
2—-1 1+1
4—-1 3+1

but, A = [; ﬂ and C = [é é] are not equal, because a,; # ¢y, i.e. 4 #5

For example, A = [; ﬂ and B = [ ] are equal matrices.



4
-3
5
2.1.2 Know row matrix, column matrix, square matrix,

Similarly, # [4 -3 5] because of different order.

rectangular matrix, zero/null matrix, diagonal matrix,

scalar matrix, identity matrix

(i) Row Matrix
A matrix having only one row is called a row matrix. i.e. matrix of order
1 X n is row matrix.
For example,
A =[a b]is arow matrix of order 1 X 2;
B=[a [ y]isarow matrix of order 1 x 3;
The matrix A has two columns and B has three columns but both have one
TOW.
(ii) Column Matrix
A matrix having only one column is called a column matrix. i.e. matrix
of order m x 1is a column matrix.
For example:

A= [Z] is a column matrix of order 2 x 1;

a
B= [ﬁ} is a column matrix of order 3 x 1;
Y

The matrix A has two rows and B has three rows but both have one column.
(iii) Square Matrix

A matrix in which the number of rows and columns are equal is called
a square matrix. i.e., matrix of order m X n is square matrix if m = n.

1 2 3
Example: B = [; ﬂ and C = [4 5 6] are square matrices.
7 8 9

The order of matrix B is 2x2 and the order of matrix C is 3 X 3.
(iv) Rectangular Matrix

A matrix in which the number of rows is not equal to the number of
columns is called a rectangular matrix. i.e., matrix of order mxn is
rectangular matrix if m # n.

1 2 3
4 5 6

2 1
and C = [—3 5] are rectangular matrices.
6 0

Example: B = [




(v) Zero/Null Matrix
A matrix in which every element is zero is called a zero or null matrix.

Symbolically, a null matrix of order m X n is denoted by O,, ,,.

SO, Om,n = [0](m,n) L. e, aij =0
0 0 O

00 0 is a null matrix of

Example: [8 8] is a null matrix of order 2 and [

order 2 X 3.
(vi) Diagonal Matrix

A square matrix is said to be a diagonal matrix if all the non-diagonal
elements of the matrix are zero and at least one diagonal element is non-zero,
i.e., a;j = 0 where i # j and at least one a;; # 0 where i =j.

d, 0 0
Example: D=0 d; 0 |isa diagonal matrix of order 3.
0 0 d3

The entries d; ,d, ,d; are of principal or leading or main diagonal of the matrix
D and these entries are called diagonal elements.
The matrix D can also be denoted as; D = diag (d;,d,,d3)

2 0 0[5 0 O 6 0 0
0 5 0f,|]0 6 0] and [0 0 0| are few examples of diagonal matrix
0 0 6J/l0 0 O 0.0 0

of order 3.
(vii) Scalar Matrix

A diagonal matrix, in which all the diagonal elements are equal, is
called a scalar matrix. i.e., a;; = 0 where { # j, and a;; = k where { = j and k is

a scalar. For example, [g g] is a scalar matrix of order 2.

a 0 0
and |0 a 0] is a scalar matrix of order 3.
0.0 a

(viii). Unit or Identity Matrix
A diagonal matrix in which each diagonal element is 1, is called a unit
or identity matrix. The unit matrix of order n X n is denoted by I,,.

0] is a unit matrix of order 2.

For example, I, = [(1) 1

1 0 O
I; = [0 1 O] is a unit matrix of order 3.
0 0 1

Note: Every scalar matrix is also a diagonal matrix.
Every identity matrix is also a scalar matrix.




2.1.3 Define upper and lower triangular matrix, transpose of
a matrix, symmetric matrix and skew-symmetric
matrix, Idempotent, Nilpotent, Involutory, Periodic,
Hermitian matrix and Skew Hermitian matrix of order
up to 4

(i) Upper Triangular Matrix

A square matrix, whose all elements below the main diagonal are zero,
is called upper triangular matrix,

ie, a;=0 Vi>j

For example, 58 3
0 1 6
0 0 3

is an upper triangular matrix of order 3.
(ii) Lower Triangular Matrix

A square matrix, whose all elements above the main diagonal are zero,
is called lower triangular matrix,

ie, a;=0 Vi<j.

1 00
For example, [2 3 0]
4 5 6
is a lower triangular matrix of order 3.

Note: If a matrix is upper triangular or lower triangular then it is said to be a
triangular matrix.

(iii) Transpose of a Matrix
The matrix obtained from any given matrix A by interchanging its rows
and columns is called transpose of A. It is denoted by A! ; read as “A transpose”.
i.e., At of order n x m is the transpose of matrix A of order m x n.
Symbolically, if A = [a;;] () then A = [a;]

(n,m)

1 2 3 1o

For example, If A = [0 p 7], then A = |2 5.
3 7

(iv) Symmetric Matrix and Skew-Symmetric Matrix

A square matrix A is called symmetric matrix if A = A.

For example, A= [?1) 3] is a symmetric matrix because A’ = [?1’ ;] =A
a d c a d c

B= [d b f] is also a symmetric matrix because B¢ =|d b f ] =B
c f e c f e




A square matrix A is called skew-symmetric matrix if A = —A

0 -4 1

For example, If A=[4 0 —3]
-1 3 0

0 4 -1

then At=(-4 0 3 l
1 -3 0
0 -4 1

=—14 0 —3] =—A
-1 3 0
ie., Al =—-A

So, Ais skew-symmetric matrix.

INote: In skew-symmetric matrix, all the diagonal elements are always zero.

(v) Idempotent matrix
A square matrix A is called idempotent if A2 = A.
Example: Show that the following matrix is'an idempotent matrix.

2 -2 -4

[—1 3 4]

1 -2 -3
[ 2 -2 —4
Solution: Let A=]|—-1 3 4]
[ 1 -2 =3

(2 -2 —4][2 -2 —4
Now, A’=|-1 3 4 ||-1 3 4

1. -2 -3/l1 -2 -3

[4+2—~4 —4-6+8 —-8-8+12 2 -2 -4
=|-2-3+4 24+9-8 4+12-12 =[—1 3 4 |=A

| 2+2-3 -2-6+6 —4-8+9 1 -2 -3

Since A=A
Therefore, A is idempotent matrix.

[ Note: Matrix multiplication will be discussed in detail in section 2.2.1. I

(vi) Nilpotent matrix

A nilpotent matrix is a square matrix A such that A? =0 for some
positive integer p. The smallest p is called the index or degree of nilpotent
matrix.

1 2 3
Example: Let, A=|1 2 3
-1 -2 =3

Now, A? =

1 2 3 1 2 3
1 2 3111 2 3
-1 -2 =31 1-1 -2 -3




W@+ @@ + G D M@+ @@+ 32 ME) +@06) +G)(-=3)
A= W+ @O+EED M)+ @) + G2 ME) +@06) +G)(-=3)
DO+ DO+ EDED D@+ (F2)@) + D) (F1DB) + (-2)() + (-3)(-3)

1+2-3 2+4—-6 34+6-9
= A2=|1+2-3 2+4—-6 3+6-9
-1-24+3 —-2—-44+46 -3-6+9
0 00
= A’=10 0 0|=0
0 00
i.e., A?=0, so A is a nilpotent matrix of index 2.

(vii) Involutory matrix
A square matrix A is said to be involutory matrix if A =1.

Example:
-5 -8 0
Let, A=1]3 5 0
1 2 -1
-5 -8 0][-5 -8 ©
Now, A?’=|3 5 0 l [ 3 5 0 l
1 2 -1 2

—15+15 —24 + 25 0 1 0=
-5+6—-1 —-8+4+10-2 1 0 0 1

i.e., A%?=1, soAis an involutory matrix.
(viii) Periodic matrix

25—-24 40 — 40 l [1 0 Ol

A square matrix A is called a periodic matrix if AK*! = A for some
positive integer k> 1 where k is called the period of A.

1 -2 -6
Example: Show that [—3 2 9 l is a periodic matrix of period 2.
2 0 =3
1 -2 -6
Let A=|-3 2 9]
2 0 =3
[1 -2 —6 1 -2 -6
Now, A?=(-3 2 9]-[—3 2 9
[ 2 0 -3 2 0 =3
[ 1+6—12 —-2-4-0 —-6-18+18 -5 -6 -6
=|-3—-6+18 6+4+0 18+ 18-—27 =[9 10 9]
| 2-0—-6 —4+4+0+0 -12+0+9 -4 —4 -3

again we multiply by A
-5 -6 —6][1 -2 -6
So, A’x A=|9 10 9][—3 2 9]

-4 —4 -3ll2 0o -3




—54+18—12 10—-12—-0 30-54+18
or A°=|9-30+18 —18+20+0 —54+90—27
| —4+12-6 8—8-0 24-364+9

[1 -2 -6
=|-3 2 91=A
[ 2 0 -3

i.e., A3 = A, so A is periodic matrix of period 2. Hence shown.
(ix) Hermitian Matrix and Skew Hermitian Matrix
A square matrix over C is called Hermitian matrix if (A)¢ = A
Whereas a square matrix over C is called Skew Hermitian matrix if (A)t = —A
Note: (A)t = At
Example 1. Show that matrix A is Hermitian matrix.
1 i =20 9i

_|-i 5 s 2
where A=la 50 8 i

-9 -=2i i 4

Solution:
[ 1 i =20 9i
| =i 5 5i 2i
Here A=l2 50 8 =i
| —91 -—2i i 4
[ 1 - 2i -9
Now i_| i 5 -5 —2i

—2i 5i 8 i

[ 9i 20 —i 4

(1 i —2i 9i
e 5 50 2i|_

and W' =12 5 8 =i |=A

—9i 20 i 4

(K)t =A
A is Hermitian matrix. Hence shown.

Note: In Hermitian matrix elements of main diagonal are real numbers, and
symmetric elements are conjugate to each other.

Example 2. Show that A is skew Hermitian matrix.

0 i 2 9i
i o s5i 2
Where A=l s 0

9i 2i 1 0




Solution:

0 i 2 9i
i o0 s 2i
Here, A=l 50 0 i
9i 2i i 0
[0 —i —2i —9i]

—i 0 -5i —2i
—2i -5 0 —i
—9i —2i —i 0
[0 —i —2i —9i]

| -1 0 —5i —2i
and BF=1_o _si 0o i
—9i —2i —-i 0

Now A=

[0 i 20 9
=c_ i 0 s5i 2
= A =—ly 5 0 i
9i 20 i 0
ie., At =-A

Hence, A is skew Hermitian matrix.

Note: In Skew Hermitian matrix elements of main diagonal are always zero,
and symmetric elements are conjugate to each other.

| Exercise2.1 J

1. Specify the type of each of the following matrices.

V550 0 7
, 1 3 3 i i
(i) 0 -3 0 (i) 4] (i) [E 0 5
2 L7
lo o gJ
[1 0 0 O
. 0 i 01 00 . 2 0
[} o ® o010l @ [ Sl
0 0 0 1
V7.0 0 [0 i 2 2 —i 5i
(vii) 0 V7 0 (viii) —-i 0 —4i] (ix) [ i 3 7i]
0 0 7 [—2i 40 0 —5i —7i 4
2. A newspaper agent of a town records the number of papers sold on

each day of one week as follows:



Mon Tue Wed | Thu Fri | Sat | Sun
Daily Dawn 80 90 100 95 85 75 | 70
Daily Jang 100 110 90 95 105 | 85 | 80
Write this information in a matrix form and write its order.
3. Find the values of the unknowns in each of the following.
, , 2 -3 5 d e g
0 | 6‘?] - [761 Z] @ la 9 o ] = [—z £0 ]
b ¢ -1 -4 7 -1
x+y 0 z 3 0 3x
(iii) 9  2x+y 6]= ; 4 6
a 1 31 |31 3
4. Find the transpose of each of the following matrices.
8
. .. 2i 50 -=3i
i [-4 3 6] (ii) [ 0 —6i 2 ] (idi) [ _34]
o 5 7 AN
(iv) 50 7i () 3 0] (vi) 4 5 9
2i —=5i -1 2 3
5. Write down in tabular form:
0 A=[a],,, (i) X = [xy] (iii) B = [bik](a,a)
6. Which of the following are symmetric or skew-symmetric matrices.
0 -5 -6 [7 5 8 0 1 3
M| o 7 @ils -1 6 () |-1 0 5
6 =7 0 8 6 -1 -3 =5 0
1 2 5 [0 -5 4]
(iv) [2 5 —7] W[5 0 -1
5 =7 3 -4 1 0|
7. Find the index of the following nilpotent matrices.
0 1 0 [1 =3 —4] 1 1 3
(i) lO 0 1] @f-1 3 4 (iii) [ 5 2 6 ]
0 0 0 [1 -3 —4] -2 -1 -3
8. Find the period of the following periodic matrix.
1 -2 -6
[—3 2 9 ]
2 0 =3
9. Which of the following is idempotent or involutory matrix.

-5 -8 0 2 -2 —4
Q) [3 5 o] i) |-1 3 4]
1 2 -1 1 -2 -3




10. Which of the following is Hermitian or Skew Hermitian matrix or neither.

3 1-2i 4+7i - 3 i
@ [1+20 -4 =20 (i) [31’ 7i —Sil
4—70 2 5 i —=5i —i

1 —i =141
(iii) | i 1 141
14i —-1+i 0

11. Find real numbers x,y,z such that matrix A is Hermitian matrix.

3 x + 2i yi
3—-2i 0 1+zi
yi 1—xi -1

2.2 Algebra of Matrices

A=

2.2.1 Carryout scalar multiplication, addition/ subtraction of
matrices, multiplication _of /matrices with real and
complex entries (3 by,/3)

(i) Scalar Multiplication of a Matrix

Let A=[a;] is a matrix and k is a scalar then the scalar
multiplication of the matrix A denoted by kA is defined as:
kA = kla;;] = [kay]; vy
In other words, for a matrix A and a number k (also called a scalar), the
matrix kA is obtained by multiplying each element of A by k.

ita={20then2a=2[2 J|=[* °]
(ii) Addition of Matrices

If A and B are two matrices of the same order (dimension) m X n then
their sum A + B is the matrix of the same order obtained by adding each
element of A with the corresponding element of B.
Thus, if A = [a;;] » and B = [bij](m,n)’ then A + B = [a;; + b;j]

(m, (mn)’
1 2 3 4 7 8
4 5 6|land B=|3 2 1

7 8 9 9 5 6

Example: Let A = . Find A + B.

Solution:

1 2 3 4 7 8 1+4 2+7 3+8 5 9 11
A+B=[4 5 6|+(3 2 1l=4+3 5+2 6+1=[7 7 7]
7 8 9 9 5 6 7+9 8+5 9+6 16 13 15




(iii) Subtraction of Matrices

If A and B are two matrices of the same order (dimension) m X n then
their difference A — B is the matrix of the same order obtained by subtracting
the elements of B from the corresponding elements of A.

ThUS, if A= [aij](m‘n) and B = [b”](m,n)’ then A—B = [Cli]' - bl]](m,n)
1 2 3 4 7 8
Example: Let A=|4 5 6] and B= [3 2 1;Find A-B
7 8 9 9 5 6
Solution:
1 2 3 4 7 8 1-4 2-7 3-8 -3 -5 -5
A—B=[4 5 6]—[3 2 1]=[4—3 5-2 6—1}=[1 3 5]
7 8 9 9 5 6 7—9 8-5 9—-6 -2 3 3

(iv) Multiplication of Matrices
Let A = [a;;] be a matrix of order m X p and B = [b;;] be a matrix of order
p X n. Then their product A-B or AB is the matrix C = [ci j] of the orderm X n
where Cij = Qj1byj + ajpbyj 4 - ai,by
The following points may be followed in matrix multiplication.
(i) The product AB is defined only if the number of columns of matrix A is equal
to the number of rows of matrix B.
(ii)) The elements in the (ij)th place of AB is the sum of the products of the
corresponding elements of #" row of A and jth column of B.

Example 1.
2 31 6 10 1
Let A=|5 7 2] andB=[5 8 3|, compute AB and BA.
8 6 4 2 7 2
Solution:
2x6)+Bx5)+(1x2) 2x10+Bx8)+1Ax7) 2xD+Bx3)+(Ax2)] 29 51 13
AB=|G5x6)+(7x5+(2x2) GXx10)+7x8)+(2x7) GXxD+(Tx3)+2x2)|=|69 120 30]
Bx6)+(6x5)+@4x2) (Bx10)+(6x8)+@4x7) (Bx1)+(6x3)+@x2)| 186 156 34

and

BA=|(5x2)+(8x5+@Bx%x8) (x3)+@Bx7)+Bx6) GxD+@Bx2)+(3x4) 74 89 33

(6x2)+(10x5) +(1x8) (6x3)+(10x7)+(1x6) (6x1)+(10><2)+(1><4)] Im 94 30]

2x2)+(7x5+2x8) 2xN+Tx7N+@2x6) CxD+(7Tx2)+(2x4) 55 67 24
1 2 2
Example 2. IfA= (2 1 2|, show that A? — 4A — 5I; = 0.
2 21

Solution:

A =

1 2 211 2 2
2 1 2(-|2

2 2 11 12




[1+4+4 2+2+4 2+4+42] [9 8
=|2+2+4 4+1+4 4+2+2(=|8 9 8
2+4+2 44242 4+4+1] [8 8 9
9 8 8] 1 2 2 1.0 0
A?—4A—-51;=8 9 8|—4|2 1 2[-5/0 1 0
8 8 9l 2 21 0 0 1
9 8 8] [4 8 8 [5 0 0
=18 9 8[—|8 4 8[—[0 5 0
8 8 91 [8 8 4 1o 0 5
9—-4—-5 8-8—-0 8—-8—-0] [0 0 O
=|8-8-0 9-4-5 8-8-0[=|0-0 0|=0;
8-8-0 8-8-0 9-4-5] 0 0 0

i.e., A> —4A - 5I; = 05. Hence, shown.

2.2.2 Show that commutative property:
(i) holds under addition i.e., A4+ B\=—"B + A
(ii) does not hold under multiplication, in general

(i) Commutative property holds under addition i.e., A+ B=B+A
If the matrices A and B are conformable for addition then commutative
property under addition holds i.e.,
A+B=B+A

Example: If A= [9ll _5;,1] and B = [gl gl,i], verify the commutative property

under addition.

Solution: . . . . | | | |
A+B:[9li —S;i]S [{gi 3;]: 921%1‘5 El;fll]:[fh —86li] ()
T 0si  3iusi "oa )

and B+a=|g Y]+]g = 81:‘;1' il—+7il]=[1l7i el -+ ()

From (i) and (ii), we get A+ B =B+ A, Hence verified.

(ii) Commutative property does not hold under multiplication, in general

If the matrices Aand B are conformable for multiplication then
commutative property under multiplication does not hold in general
i.e., AB # BA

1 4 7 3 4 1
Example:If A=(2 5 8landB=|1 2 1|, show that AB # BA
3 69 2 11




Solution:

1 4 71[3 4 1] [3+4+14 4+8+7 1+4+7] [21 19 12
AB=1[2 5 8|[1 2 1]: 6+5+16 8+10+8 2+5+8 :[27 26 15‘...(1)
3 6 9ll2 1 1] l9+6+18 1241249 3+6+9] (33 33 18

3 4 111 4 7
Now BA =1 2 1]2 5 8
2 1 13 6 9
34843 12+20+6 21+32+9] [14 38 62
=[1+4+3 4+10+46 7+16+9 =[ 20 32] ....(ii)
2+2+3 8+5+6 14+8+9 7 19 31

From (i) and (ii),
we get AB # BA. Hence shown.

2.2.3 Verify that (AB)' = B'A"' (3 by 3)

If the matrices are conformable for multiplication then, we can verify:

(AB)t = BtA!
2 -3 4 3 45
Let A=|5 7 9]andB={—5 -7 —9]
-2 3 -4 2 3 6
2 -3 41[3 4 5
AB=|5 7 9”—5 -7 —9]
-2 3 —4ll2 3 6
6+15+8 8+21+12 10+ 27 +24 29 41 61
=|15-35+18 20-49+27 25-63+54 =[—2 -2 16]
-6—15—-8 —8-21—-12 —-10-27-24 -29 -41 -61
29 -2 =29
Thus, (AB)t=l41 -2 —41] ...(0)
6116 —61
2 5 =2 3 -5 2
Now, At=|-3 7 3] and Bt=[4 -7 3
4 9 —4 5 -9 6
3 -5 2][ 2 5 -2 6+15+8 15-35+18 —-6—-15-8
BLA =14 —7 3”—3 7 3]= 8+21+12 20-—49+27 —8—21—12]
5 -9 6ll 4 9 -4 10+27+24 25—63+54 —-10—27—24
29 -2 =29
=141 -2 —41] ... (id)
61 16 —61

From (i) and (ii), we get (AB)! = Bt. Af. Hence verified.
Properties of matrix operations

(i) Properties of Matrix Addition
Following properties are satisfied by the matrices, A, B and C of the
same order w.r.t matrix addition.



(ii)

(i)

(iv)

(i) A + B is also a matrix of the same order.
(ii) A+B=B+A
(i) (@A+B)+C=A+B+C0C)

(iv) For any matrix A, there exist a matrix of the same order, that is
null matrix O, suchthat A+0=0+A=A
(v) For any matrix A, there exists a matrix B of the same order, such

that A+B=B+A=0

where O is the null matrix of same order. The matrix B is called the
additive inverse of A and is denoted by -A.

Properties of Scalar Multiplication

Following properties are satisfied by the matrices A and B of the same
order and two scalars with respect to scalar multiplication.

(i) k;A is also a matrix of same order.

(i)  (kik2)A = Kkq(koA)

(i)  (kqy +ky)A =k;A+k,A and k;(A+B) =k;A+Kk,B

(iv) 1A=Aand -1A=-A

(v) 0A=0=Aoand k;0=0k; =0

Properties of Matrix Multiplication

If the matrices A, B and C are conformable for addition and
multiplication, then

(i) (AB)C = A(BC).

(ii) A(B+C) =AB + AC and (B + C)A = BA + CA.

(iii) - Al'=1A = A where A and I are of the same order.
(iv) k(AB) = (kA)B = A(kB), where k is a scalar.
(v) Let A be a square matrix of order n, there exist a matrix B of the

same order n, such that AB = BA =1, then B is called an inverse of A
and is written as B = AL

Properties of Transposed Matrices

If two matrices A and B are conformable for addition and
multiplication, then

) (A+B)=A'+Bf

(i) (kA)t = kA" where k is scalar

(iii) (AH'=A

(iv)  (AB)t = BfAt



141 2 3i 24+i 3—i 4
1. IfA=] 4i 5—i 2+4+3ilandB=]| i 0 5 —i | then find:
0 5 1—1i 6+i 2 2+ 3i
(i) A+B (i) A—B (iii) 24 — B (iv)3A+ B +1
where I is unit matrix of order 3.
3 -4 1 -5 4
2. Leta=|4 s 7\,B=[ % andc=|6 -3
-2 -3 8 -2 7
wherever possible, compute the following:
(i) AC (ii) BC (iii) AB (iv) BA (v) A?
(vi) CB (vii) (AB)C (viii) CtBt (ix) CtAt (x) (CA) B
1 -3 2 2 1 -1 1 4 1
3. LetX=12 1 —3,Y=l3 -2 —1] andZ=[2 1 1]
4 -3 -1 3 -5 -1 1 -2 1
then show that XY = XZ.
-2 1 0
4. IfA=|-1 4 3]|then find: A> — 5A+ 4I.

0 8 5

1. o w? 0w w? 1 1 0
5. Prove the identity: {| w w?+ 1 |+ |w? 1 wlilw]|=]0]
w1l w w w? 11)lw? 0

6. If A= then verify:

3 2 1 9 4 6
4 -2 .5 ] and B = [ 7 -8 5
-1 0 -7 -1 0 3
(i) commutative property under addition
(ii) (AB)" = BYA*

]

2.3 Determinants

2.341\. Describe determinant of a square matrix, minor and
cofactor of an element of a matrix

(i) Determinant of a square matrix

Determinant is the number which is associated with any square
matrix. Determinant of a square matrix A is denoted by det(A), det A, or |A]|.
a1 Q12

For 2 X2 matrix A= [a21 Gy

], the number a;;a,, —a,a,; is its

determinant. Similarly,

ai1 Q12
az1 Q3
az1 aszz

for 3 X 3 matrix A =




|Al = aq; |

Example: Let A =

Solution:

|- axz|

9
5
1
9
5

1

az1 a23|
asz; dss
= a11(az2a33 — A3037) — A12(A21a33 — A23a31) + a13(az103; — A2031).

2
7
6

2
7
6

a1 dzz

s |
Blaz; as;

, Find its determinant.

=af} d-ole d+2l 3

=4(30—7) —9(18 — 56) + 2(3 — 40) = 360.

(ii) Minors and Cofactors of an element of a Matrix

(a) Minor

The minor of an element q;; of a matrix A is the determinant of a square
sub-matrix, obtained by deleting ith row and jth column. It is denoted by M;;.
(b) Cofactor

The co-factor of an element q;; of a matrix A, denoted as A;
as A;; = (-1)"My;

Example 1. Let A =

aiq
az1
aszi

A1z diz
Az A3,
azz 04sz3

Find M;,, A, M3, and Azy.

Solution:

Example 2. Let A =

Solution:

M12= Mll’lOI‘ Of alz — |

M31 = Minor of az, = |

Az = Co-factor of az; = (—1)3*1M3, = |

1 4
2 3
0 2

az1 a23|
az; assl’

Ay, = Co-factor of a;, = (—1)+2M,, = — |21
12 = Co-factor of a;; = (=1) 12 = 7 |gg,
Az a13|
Azz dz3
5V)

Qazz
-2
—4|. Compute M,; and As,.
3

M=) J=@x®-@x©=2

A= Di-n+ @y =0

Az, = (—1)3+2
2.3.2 Evaluate determinant of square matrix using cofactors

|

Let A=

-2
—4

| (Expansion by first row)

is defined



Using cofactors for each element of 1st row.
A =DM =100 - Co@)=17
2= -l@3) - v = -6
3| _ _
= @@ - O] =4

A4,A;,, and A5 are three cofactors.
Now, det A =ay1A1; +a12A15 + a3A13 =1(17) + (4)(—6) + (—2)(4) = =15
Similarly, we can also calculate det A by using other rows,
det A = az1Az1 + az2A2; + az3A23 = =15 (By Ry)
det A = a3;1A3; + azpAsz; + azzAszz = —15 (By Rg)
we can also calculate det A by using columns.
Using cofactors for each element of 1st column

A =D =106 - CHE)=17
A = D} ] = -(®E) = (D@ = -16

A = CDPM[T 7Y = (@) = (-2E)] = -10
Ai1,A51, and Aj; are three cofactors.
Now, det A =a;;As; + ay1Asy + asAs; = 1(17) + (2)(—16) + (0)(—10) = —15
Similarly, we can also calculate det A by using other columns,

det A = ajpA1; + az,A7; + azpAz; = —15 (By ()

det A = a13A13 + @33A23 + azzAzz = —15 (By (3)

In general, det A can be calculated by using any row or column. The

evaluation of a determinant with the help of cofactors is known as Laplacian
expansion.

2.3.3 _Define singular and non-singular matrices

(a) Singular Matrix:
A square matrix A is said to be a singular or non-invertible matrix if its
determinant is zero.

Example: If A = [; 2] then [A| = |; é =0.

“ Al =0

~ A is a singular matrix.
(b) Non-Singular Matrix:

A square matrix A is said to be a non-singular or invertible matrix if its
determinant is not equal to zero.



Example: If A = [é ﬂ, then |A| = |§ i| =-2+0.

“ |Al#0
=~ A is a non-singular matrix.

2.3.4 Describe the Adjoint of a square matrix and a diagonal
matrix

(a) Adjoint of square matrix

The adjoint of a square matrix A is the transpose of the matrix formed
by all the cofactors of the corresponding elements of A and is denoted by adj A,

Symbolically, ad] A= [Al]]t = [A]l]

all a12 s aln
a Ayy o QA
Let 4=|® 2 @n
An1 Qp2 - Qpp
The matrix of the co-factors of the above matrix is
A11 A12 e Aln A11 A21 s Anl
A A, .. A ) t A A, .. A
[Ay] =72 72 TP andadj A = [Ay] = [a] = |72 T T
Apr Ap - Amng Al Ay o Anp
1 3 5
Example: Find adjoint of matrix A=|2 4 7
9 8 6
A11 A12 A13 ‘
Solution: We know that adj A = |A;; A, Ajz|, so we find all the cofactors.
Az1 Az Asg

G e M B R G R B e A [ B e R C
Aa= (P Y= =20 ay = Y= e =2
A= (P20 = (1239 = 239, Ay = (1] 3= (-1 -19) = 19
A= O= =1 A =)L O] = (1) =3
1

Ay = ([ 3| =~ (-2) = -2

-32 51 -—201" [-32 22 1

22 -39 19 =|51 -39 3

-20

2
Hence, adj A =
1 3 -2 19 -2




(b) Adjoint of diagonal matrix

a1 O 0
Let A = 0 a22 0
0 0 asz3
A O 0
The matrix of cofactors of matrix Ais: | 0 Ay, 0
0 0 Asj
0
Where All = (—1)1+1 a’(Z)Z a ‘ = a22a33
33
a
Ay = (-1 (1)1 asg‘ = ap1033
Azz = (-1)°"° 8 a, ‘— 11022
Q32033 a22a33 0
Hence, adj A = 0 a11a33 a11a33 0
0 Q11022 11022
2 0 0
Example: Find adjoint of matrix A= [0 ' 5 0f.
00 1
A, O 0
The matrix of cofactors of matrix Ais: | 0 Ay, 0
0 0 Ajs
= 1+1 5 0 _ _
where Ai=(1D |0 1|—5><1—5
2 0
22:(—1)2+2|0 1|=2><1=2
2 0
Ass = (—1)**3 |0 5| =2x5=10
50 01" [5 0 0
Hence,adjA=|0 2 0| =|0 2 O
0 0 10 0 0 10

2.3,5, Use adjoint method to calculate inverse of a square
matrix and verify

The inverse of a square matrix A, denoted by A%, is another matrix
such that the product of A and A~ is the identity matrix.

i.e., AA"1 = A"'A =1 (where Iis identity matrix of the same order)

A~! exists only if A is non singular matrix.

Note: (i IfB=A"1,thenB™1=A
(i) (A™1)"! = A, i.e., inverse of the inverse of a matrix A is A itself.




Adjoint Method for computing A~!
The inverse of a matrix A by adjoint method is defined as

adiA - here |A £ 0
———: where
|A]

Example 1. Find the inverse of a matrix A = [é i] by adjoint method.

_1:

Solution: Here |A| = |§ i| =4—6=-2%0.

Thus, A is non-singular, so its inverse exists.

: Ay, Agl A —A
We know that for 2 X 2 matrix A, adj A = [ o 12] e 22 12]

A21 AZZ | _A21 A11
4 =2
So, ad]A—[_3 1]
2 1
11 A= L[4 —2)1_
Now, ATl = adj A= 2[_3 1]_ % _%

One can verify that AA 1 =A"1A= [(1) (1) =1L

9 8 6

Example 2. Find the inverse of A= |2 4 7| by adjoint method.
1 3 5

Solution: We know that, A= = acliilA, where |A| # 0.

9 8 6
2 4 7
1 3 5
Cofactors of A:

A= 0L A=y =1 Ap=c@ = come) = -3

Here, |A| = =9(20—21)—8(10—7) + 6(6 — 4) = —21 # 0.

fa= DR =@ =2 A=) Y= comen = -2
A= 1227 Y= e =39 A=) 9= 29 = 19
Ay = P 38 = (-1 (32) =325 A = (-1 [) S| = (-1 1) = -5
A= D)) 8= 1P o) = 20
A1 Az Az -1 =22 32
A1z Az Az|=(-3 39 51
A1z Azz Az 2 =19 20
-1 =22 32
1 -3 39 51

2 =19 20

So, adjA =




2.3.6 Verify the result (AB)"! =B 1 A1

Example: If A= [; ﬂ and B = [5 g], then show that (AB)™! =B 1 A1,

Solution: L.H.S = (AB)™!
First we find the product of A and B

o215 6] _[5+14 641671 _ [19 22
s=, Gl o = 15 + 28 18+32]_[43 50
19 22
Now, |AB|=|43 co| = ANGED) - @243 = 4
adj(AB)

We know that (AB)™! =

|AB|
50 —22 25 —11
lrs0 —22 4. 4 2 2
-1 _ = _ _
So, @B =2[%; Tol=|4 10|~ |4 1o
4 4 4 4
RH.S = B! A-!
First we find A~ and B™1 .
1 2 5 6
A=]3 l=0®-@6 B=] o=®® -6
=4-6=-2%0 =40—42=—-2#0
R 8 —6
ad}A‘[—s 1 ade_[—7 5]
—1_adjA _-1[ 4 = —2 —1_adjB_ -1 8 —6
Now, A =TA 32 [_3 1] Now, B™* = B 2 [_7 5]
-2 17 -4 3
2 0 2 2 2
o % 3]z 1 g+> —4—- |Z =2
So,BRAT=17 12 =] 0 s 7 s [T 1
2 2 2 2 4 2 4 4 4

+ L.H.S = R.H.S
~ (AB)"'=B"1A1

Hence verified.

1. Evaluate the following determinants:
5 4 3 -2 4 3 2¢c ¢ c
(3 -4 o )5 4 -2 (i) |[a a 2a
2 3 1 2 7 3 b 2b b




1 0 1-i 7 =2 1
@wv)y|] o 1 i w12 2 4 Vi) lo w? 1
1+i @ 1 4 3 7 0 w 1
2. Identify the singular or non-singular matrix.
4 0 1 4 2 0 13 -5 4
(i) [ 7 5 5 ] (ii) [ 3 0 1 ] (iii) [8 1 3]
-12 -6 -7 -1 1 -1 7 -1 2
1 6 3 4 0 0 20 10 30
(iv) [—2 1 0] (v) [0 3 0] (vi) [2 1 3]
6 4 2 0 0 2 0 20 1
3. Find the value of x for which the following matrices are singular.
710 5 5 4 N A N LR
| . x] (i) [x 8] (i) |3 —4 2 (iv)|2 -3 4
5 x 1 x -2 -1
4. Find the adjoint of the following matrices.
4 6 8
4[3 4 ..[—0.3 0.5
(i) (ii) (iii) [1 3 2]
[—1 2] [ 1 2 ] 2 7 s
1 0 1-1 5 0 0
)|1+i i 1 ] v) [0 6 0]
0 1 =i 0o 0 7
5. IfA= [171 150] and B = % ﬂ then verify:
H@ahHt=a (ii) (AB)"t = B71A™! (iii) adj (AB) = (adj B)(adj A)

6. Verify the following:
-1 W ~
al2 216 8 <Gl E 2

) | e ey I P

1

7. Use adjoint method to calculate the inverse of the following square
matrices, if possible.
5 6] [7 3] 123
() (i1) (iii) [2 4 6]
3 4 9 6 30 9
2 3 4 1 0 2 2 1 0
(iv) [ 3 1 5] (v) [0 2 1] (vi) [1 1 o]
-5 1 0 1 -1 1 2 =35

2.4 Properties of Determinants
2.4.1 State and verify the properties of determinants

The properties given in this section are very useful in evaluating the
determinants. The properties of determinants of order three are also valid for
determinants of any order. All the properties which hold for rows are also valid
for columns.




Property 1. The values of the determinants of any matrix A and its transpose
are always same.

1 0 3
Example: Let A=|2 1 2|. Verify that |A| = |AY.
4 3 2
1 0 3
Solution: |[A| =2 1 2|. Expanding |A| by R, , we get
4 3 2
1 2 2 2 2 1
|A|=1|3 2|—0|4 2|+3|4 3|=(2—6)—0+3(6—4)=2.
1 2 4 1 2 4
Now, A'=|0 1 3|then|A=]|0 1 3|. Expanding |A| by R, , we get
3 2 2 3 2 2
g_411 31 _,]0 3 0 1) _ . \ oy
|A|_1|2 2| 2|3 2|+4|3 S| =@-0-20-9+40-3) =2

So, |A| = |AY|. Hence verified.

Property 2. The interchange of any two rows of a matrix A changes the sign of
its determinant without altering its numerical value.

1 0 3
2 1 2
4 3 2
obtained by interchanging any two rows of A.

Solution: Interchanging any two rows, say second and third, we get:
1 0 3
4 3 2
21 2

1 0 3
2 1 2
4.3 2

0 3
4 3 2
2 1 2

From (i) and (ii), we get |B| = —|A]|.
Hence verified.

Example: Let A= . Verify that |B| = —|A|, where B is a matrix

B =

>

Now |A| =

=ily 3l -ofy Glesly o =2 -0

and [B| = =1|§ §|—o|j §|+3|‘2* f|=—2 ...(i)

Property 3. If two rows of a matrix are identical, then its determinant is zero.

1 3 0
Example 1. Show that |[A| =0, where A= |4 3 2|.
1 3 0
1 3 0
Solution: |[A| =4 3 2|.
1 3 0

Expanding |A| by R; , we get



a=1fy gl =2l7 ol oli

=1(0-6)—3(0-2)+0=0
So, |A| = 0. Hence shown.
Alternatively, ~ Two rows are identical

~ |A] = 0.
1 3 1
Example 2. Show that |A| =0, where A=|2 2 2].
4 0 4
1 3 1
Solution: Here |A| =2 2 2].
4 0 4
Expanding |A| by R; , we get
2 2 2 2 2 2
Al=1]5 4 _3|4 4|+1|4 0

=18-0)—-3(8-8)+1(0-8)=0
So, |A| =0
Alternatively, + Two columns are identical
~|Al =0
Property 4. If all the elements of a row of a square matrix are zero, then its
determinant is zero.

2 -3 5

Example: Show that |A| =0, where A=|0 0 0].
9 —4 2

S0 0 0 0 0 0

|A|_2|_4 2|+3|9 2|+5|9 _4|

=2(0)+3(0)+5(0)=0
Alternatively, + each element of R, is zero.
~|Al = 0.
Property 5. If every element in a row of matrix A is multiplied by the same
number k, then |A| gets multiplied by k.

1 2 3 5 10 15
Example: Show that 52 3 7|=[2 3 7]
4 0 1 4 0 1
5 10 15
Solution: RH.S=12 3 7
3 7 2 74 0213 3 7 2 7 2 3
:5|o 1|_10|4 1|+15|4 025(1|0 1|_2|4 1|+3|4 o)
1 2 3
=52 3 7/=L.H.S
4 0 1




L.H.S =R.H.S

1 2 3 5 10 15
512 3 7|=1(2 3 7]|. Hence shown.
4 0 1 4 0 1

Property 6. If every element a row of a matrix A be expressed as the sum of
two terms then |A| can be expressed as the sum of determinants of two
matrices differing in the elements of that row but with remaining rows as the
same as those of |A|.

Example: If
16 3 0 16 3 0 0 3 0
A=120 5 1],B=[16 5 1],C=[4 5 1],
17 7 2 16 7 2 1. 72
then show that |Al = |B| + |C|
Solution: L. H.S
16 3 0 16+0 3 0 16 3 0 0 3 0
|Al =120 5 1{=|(16+4 5 1|=|16 5 1}+({4 5 1|=|B|+|C|=R.H.S
17 7 2 16+1 7 2 16 7 2 1 7 2

Property 7. If the elements of one row of a matrix A are k times the
corresponding elements of its another row, then |A| = 0.

2 5 -3
Let A=|k(2) k(5 k(—3)] where R, = kR,
7 -2 11
2 5 =3 2 5 =3
Then |[Al=(k(2) k(5) k(-3)|=k|2 5 —3| by property 5
7 =2 11 7 =2 11
= k(0) by property 3 i.e.,R; =R,
= 0
Corollary:
(k1021 + kpa3;  kiag; + kyaz;  kyazs +kaass
If A= az asn a3 , then |A| = 0.
az1 azz a33

Hint: |A] = |B| + |C|,

kiaz1  kiaz,  kiazs kpaz;  kpasz; kaass
where B =] a,; ayo as3 ] and C = [ a1 azy aAy3
L A31 aszz a3z az1 aszz a3z
Property 8. If to each element of a row of a matrix A is added, a constant
multiple of the corresponding element of another row, then the value of |A| is
unaltered.

Let A=|az1 QaQzz a3

a3z1 043z dasz

a1 Q12 a13]




a1 +kay, ax+kay, a3+ kass
and B = apq aszo ass3 ,
asq asz ass

where (R; of B) = (Ry0of A) + k(R, of A).

ka,, kay, kays
az1 az2 az3
aszi asz aszz

i1 A1z  diz
az1 Az dz3
azp dzz dAzz

Then |B| = + , By using property 6

az1 4z dzs
az1 dzz dzs
azq dzz dzz
= |[A]l + k(0) = |A] By using the property 3 (R; =R,)
Similarity, it can be shown that
aiq + kiaz1 + kpazy  agz + kiagy + kaazy  ajs+ kjazs + kyass
azq azz az3
asq asz az3

=|Al+k , By property 5

2.4.2 Evaluate the determimant without expansion
(i.e., using properties, of determinants)

1 x y+z
Example 1. Without expanding, show that |1 y z+ x| vanishes.
1 z x+y
1 x y+z
Solution: Let A=|1 vy z+x]|.
1 z x+y

Adding C, to C3, we get:

1 x x+y+z
A=|1 vy x+y+z|;
1 z x+y+z
1 x 1
A=(x+y+2)|1 y 1 [Taking (x + y + z) common from Cs],
1 z 1
=(x+y+2z)x0=0; [By using property 3]
1 o ?
Example 2. Without expanding, show that |[A|=|w ©w? 1]|=0.
w? 1 w
Solution:
1 o 14+w+w?
Al=1lw ®? 14w+ w?|; [By adding C; and C, to C5]

w 1 1+w+w

= |A|



(i)

(iid)

Let A=

SIESEES

2
3
1

z
1

Solution: Let A=

-5 1
Without expanding, prove, each of the following:
x+y y+z z+x

Q QAT ™

[+ 14+ w+ w?=0]

[By using property 4]
1 a a?>-bc
Example 3. Without expanding, show that [1 b b?% — ca| vanishes.
1 ¢ c*—ab
1 a a®>-bc 1 a a? 1 a bc
1 b b?>—ca|l=|1 b b?*—-|1 b ca
1 ¢ c*—ab 1 ¢ c? 1 ¢ ab
A= Ay — A, (say) ... (i) [By using property 6]
1 a bc
=11 b ca‘
1 ¢ ab
1 |a a’ abc
= 25e|P b2  abcl; [Multiplying Ry, R, R3, by a, b, c respectively]
¢ c? abc
abc ¢ a’? 1 .
= he b2 1l; [Taking abc common from Cs]
c c* 1
1 a? a
=—|1 b% b [By using property 2]
1 ¢? ¢
1 a a?
=(1 b Bb%|=4A; [Byusingproperty 2]
1 ¢ c?

From (i), A= Ay —A,=A; — A;= 0 Hence shown. [+ A,=A]

| Exercise2.4 )

5
4

QL a0 Q

0
6] , verify that |A] = |A|

1 x y+z
1 y z+x
1 z x+y

x y |=0 (i1) =0

1 1
c+d
a+d| _
b+a =0
b+c




3. Without expanding determinants, prove that

1 a b+c x+1 x+3 x+5
(i) 1 b c+a|l=0 (i1) x+4 x+6 x+8(=0
1 ¢ a+b x+7 x+9 x+11
x+1 x+3 x+5
(iii) x+4 x+6 x+8|=0
x+7 x+9 x+11
b+c a a
(iv) b ct+a b |=4abc
c c a+b
14+a 1 1 1 1 1
(v) 1 1+b 1 =abc(1+a+5+z):abc+bc+ca+ab
1 1 1+c
a By afy| |la a? B
vi) |8 va aBy|=|B B* B°
y af aByl |y y* y?
4. Without expanding the determinants; prove that
a b c y b q X €
x ¥y zl=|x a p|l=fp g T
p q r z ¢ r a b c
a a® 1+a
5. If a, b, c are different and A= |p b2 1+ b3 =0,
c ¢ 1+¢3

then show that 1 + abc = 0.

2.5 Row and Column Operations

Row and column operations are very useful in many applications in
matrix theory, specially solving the homogenous and non-homogenous
systems of linear equations.

2.5.1 ~Describe the elementary row and column operations
on matrices

(a) Row operations on matrices:

If A is m X n matrix, then m X n matrix B obtained from A by performing
elementary row operations on A is called row equivalent to A. Symbolically,
we write B~A and read as “B is row equivalent to A.”

Similarly, we can define column equivalent matrices, that is replacing
the word “row” by “column” in the above definition. We also write B~A to
denote B is column equivalent to A.



There are three elementary row operations:
(i) Interchange of any two rows. This is usually denoted by R;; which
means interchanging of R; with R;.

3 2 1 1 4 -1
For example, [1 4 —1] ~ [3 2 1 |byRy
2 3 0 2 3 0

(ii) Multiplication of a row by a non-zero scalar. This is usually denoted by
kR; which means R; multiplied by k.

1 4 -3 2 8 —6
For example, 0 2 5(~[0 2 5 |by2R;
1 3 7 1 3 7

(iii) Addition of any multiple of one row to another row of the matrix.
This is usually denoted by R; + kR; which.means kR; is added to R;.

1 2 1 1 2 1
For example, 2 -1 3|~|4 3 5|byR,+2R,
4 5 6 4 5 6

(b) Column operations on matrices

Three elementary column operations with notation are given as below:
(i) Interchanging any two columns, i.e., C;; .
(ii) Multiplication of a column by any non-zero scalar ki.e., kC;.
(iiij  Addition of any multiple of one column to another column i.e., C; + kC;,
where C;, (; are any two columns and k is any non-zero scalar.

2.5.2 Define e€chelon and reduced echelon form of a matrix

(a) Echelon form of a matrix

A matrix A of order m X n is called (row) echelon form, if it has the
following structure.

(1) The first non-zero entry in any row is 1 that is leading entry.

(ii) All entries below the leading entry must be zeros.

(iiii  Every non-zero row in a matrix precedes every zero row, if there

is any
0 1 -3 6 1 5 -1 2
For example, [0 0 1 -3(and|0 0 1 5] are in echelon form.
0 0 0 O 0 0 0 1
011 5 0 1 -5
But [0 1 6 —2] and [0 0 —7] are not in echelon form.
0 00 O 0 0 4




(b) Reduced Echelon form of a matrix

A matrix A of order m X n is called reduced echelon form if it is in
echelon form, additionally all the elements of column which contain leading
entry 1 are zero except that leading entry.

0100 01 0 6
For example, [0 0 1 O|and [0 0 1 3] are in reduced echelon form.
0 0 0 1 0 0 0O
01 0 3 (1) g 8
But|0 0 1 2] and 0 o ol are not in reduced echelon form.
0 0 0 4 0 0 0

2.5.3 Reduce a matrix to its echelon and reduced echelon form

Method of reducing a matrix in echelon form is explained with the help
of the following example.

2 3 =1 4
Example: Reduce the matrix A=|1 -1 -2 —3] to (row) echelon form.
3 -1 3 2
2 3 -1 4]
Solution: A=|1 -1 -2 =3
3 -1.3 2|
1 =1 -2 -=3]
~12 "3 -1 4| byRyp
3 -1 3 2 |
[1 -1 -2 -3]
~10 5 3 10 by R, +(-2)R, and R, +(-3)R,
0 2 9 11
1 -1 -2 -3
o 1 3 by = R
B 2 Yy 52
0 2 9 11 |
(1 -1 -2 -3
3
~1% 1 5 2| byRy+(-2)R,
39
0 0 = 7
(1 -1 -2 -3
~0 1 5 2 by — R,
0 0 35 39
L 1 39 |

It is an echelon form of the given matrix.



(ii) Reduced Echelon form of a matrix

6 3 —4
Example: Find the reduced echelon form of the matrix A = |—-4 1 —6].
1 2 -5
6 3 —4
Solution: A=1-4 1 -6
1 2 =5
[1 2 -5
~ _4 1 _6 ) R13
L6 3 —4
[1 2 -5
~10 9 =26|, R;+4R;
6 3 —4
1 2 =5
~[0 9 -=26|, R;—6R;
0 -9 26
1 2 -5
26 1
~ 0 _? )] §R2
0 -9 26
10 4
9 R, — 2R,
~ 26
0 1 =% Rs+9R
0 0 O

It is the reduced echelon form of A.
2.5.4 Recognize the rank of a matrix

The number of non-zero rows in echelon form/reduced echelon form of
a matrix is called rank of that matrix.

11 -2 61_ has rank 2, because there are 2 non-zero
For example, [0 0 1 3i .

00 0 0 rows in echelon form.

1400 has rank 3, because there are 3 non-
Whereas, 0 010 .

00 0 1 zero rows in reduced echelon form.

Note: 1. If |A| # 0, then rank (A) = order of the matrix A.
2. Rank (A) = 0.
3. Rank of a non-zero row or column matrix is 1.




2.5.5 Use row operations to find the inverse and the rank of
a matrix
Let A be a non-singular matrix. If the application of elementary row

operations in succession reduce A to I then same sequence of operations
reduces I to A™L. ie. [AI]~[1:ATY]

2 5 -1
Example 1. Find the inverse of the matrix A=|3 4 2 | by using row
1 2 -2
operations.
2 5 -1
Solution: |4 =1|3 4 2
1 2 -2
=2(—8—-4)—-5(-6—-2)—-1(6 —4) =—24+40-2
=40-26=14

As |4 # 0, so A is non-singular and its inverse exists.

25 -1:10 0
Appending I; on the right of the matrix A, wehave |3 4 2 : 0 1 0
12 -2:00 1
A I
1 2 =2:0 0 1
~13 4 2 01 0 by R13
2 5 -1:1 0 0
1 2 -2:0 0 1 R, + (=3)R,
~10 -2 8 01—3byR+(_2)R
0 1 3 :1 0 -2 3 !
~01 40 -5 3 bY(_j)RZ
01 3 9 0 -2
1060 1 F
o1 a0 -7 3 by 2 T DR,
0 0 7 7 Ry + (=2)R,




_6 4
7 7
4 3 1y Ry + (=6)R3
7 T12 "2 R,+4R;
I R
7 14 2
6 4
% a4 !
-1_1] 4 3 1
|1 L 1
7 14 2
5 9 3
Example 2. Find the rank of A=|-3 5 6 | by reducing it to echelon
-1 -5 =3
form.
5 9 3
Solution: A=|-3 5 6
-1 -5 -3
-1 -5 -3
~1-3 5 6 byR13
5 9 3
[1 5 3
~|-3 5 6|by (-1)R;
[ 5 9 3
[1 5 3
~[0~ 20 15|by R, + 3R,
5.9 3
[1 5 3]
~]10 20 15 |by R3—5R;
0 —-16 —121
[1 5 3]
3 1
0 —-16 —12I
[1 5 3
~{0 1 2|by Ry +16R,
0 0 0

This is an echelon form of the matrix A and number of its non-zero
rows is 2. Hence, the rank of the matrix A is 2.



1 -1 2 =3
2 0 7 =7/
3 1 12 -11

Example 3. Find the rank of the matrix A =

1 -1 2 -3
Solution: 2 0 7 =7
3 1 12 -11

2
1 -1 2 -3
0 4 6 —21"’ by R3+(_3)R1
[1 —1 2 -3] L
3 1
0 4 6 -2
[1 -1 2 -—3]
~fo 1 2 _% , by Rs + (—4)R,
0 0 0 o0
i 7 7
L0 3 =3
~ O 1 E _1 1] by R1+R2
2 2J
0 0 0 O

This is in reduced echelon form and the number of non-zero rows are
2, so the rank of the given matrix A is 2.

| Exercise25 )

1. Reduce the following matrices into echelon form using elementary row
operations.
5 9 3 1 2 -1 3 -4 0 9
Q-3 5.6 l |2 4 1 l (iii) [ 2 4 -1 0 l
-1 =5 =3 3 6 2 10 0 -2 -4
2. Reduce the following matrices into reduced echelon forms using
elementary row operations.
3 5 4] [0 3 =2 1 1 1 -1
@4 1 5 i [2 -4 6 @2 2 1 —3]
7 6 3l 2 3 -1 -1 -1 1 -3
3: Find the rank of the following matrices using elementary row operations.
[1 2 3] [2 3 4 [0 -3 6 4 9
@f2z 3 4 |3 1 2] @i -1 2 -1 3 1
0 2 2] -1 2 2 2 -3 0 3 -7
L1 4 5 -9 -7
4. Find the inverse of the following matrices using elementary row
operations.
1 2 =3 1 2 -1 [1 -3 2
(i) [ 0 -2 0 l (ii) [0 -1 3 l @i |12 1 Ol
-2 =2 2 1 0 2 0 -1 1




2.6 Solving System of Linear Equations

A system of linear equations is a collection of two or more linear
equations for solving same set of variables.
For example, a1 x + by =k and ax+by+ciz=k
a,x + b,y =k, arx + by +cz =k,
azx + byy + c3z =k3
are the systems of linear equations in two and three variables respectively. An
ordered triple (tq,t,,t3) is called a solution of given system- of three linear
equations and three variables if all equations are satisfied by these values,
the set of all solutions of linear system is called the solution set.

2.6.1 Distinguish between homogeneous and non-
homogeneous systems of linear equations in 2 and 3
unknowns

Consider a system of three linear equations in three variables:

ay11%1 + Q12%; + ay3x3  =by
Az1X1 + Q22X + Ax3X3 = bz} (1)
az1x1 + azpxy +azzxs = by
The system (1) can be written as
AX = B, .(2)

Q21 Q2 Q23
az1 dgzz 433
The matrix A is called the matrix of the coefficients of the system of
equations, X is the column matrix of unknowns and B is the column matrix
of constants.
In the above system (2), if B=0, then the system is called
homogeneous, otherwise non-homogeneous.
For example, the system of equations:

where A=

a11 Q12 Q33
,X=

X1 by
le and B = [bzl
bs

X3

_3x1 + 2x2 = O,
7X1 - 5x2 = 13
can be written as AX =B
-3 2 [ _T0 . _
where A—[7 _5], x_[xz] and B—[13]¢O (i.e B=0)

Thus, the system is a non-homogeneous system of two linear equations
in two unknowns.
Similarly, the system of equations:



X1 + 7x2 - BX3 = 0,
11x1 - sz + 2x3 = 0,
—x; + 2x, +3x3 =0 can be written as AX=B,

1 7 =3 X1 0
where A=|11 -5 2|, X=|X2| and B=|0[=0 (i.,e B=0)
-1 2 3 X3 0

Hence, it is a homogeneous system of three linear equations with three
unknowns.

2.6.2 Solve a system of three homogeneous linéar €quations
in three unknowns

A system of homogeneous linear equations
ax+by+cz=0
ax+byy+cz=0
azx+bzy+c3z=0
is always satisfied by x = 0,y = 0 and z = 0. The solution (0,0,0) of the above
system is called trivial solution or zero solution. Any other non-zero solution
of the above system of equations is called a non-trivial solution.
We usually convert the matrix of the coefficients to echelon form by
using elementary row operations to get simplified form of the system.
Finally, with help of free variable(s), we get non-zero solutions, if possible.

Note: If AX = 0 is homogenous system of linear equations with “n” unknowns,
then: (i) it has only trivial solution if rank of A=n or [A| #0
(ii) it has trivial as well as infinitely many non-trivial solutions iff
rank (A) <n or |[A| =0

Example 1. Solve the following system of homogeneous linear equations:

x+y+z=0
4x +5y+2z=0
2x+3y=0

for non-trivial solutions if possible.
Solution: We change the above system of equations to the matrix form AX = 0

1 1 17x 0

P (TN

2 3 0llz 0
1 11 x 0
where A=(4 5 2|, X= [y] and 0= [0]
2 30 z 0




1

0 1 —2|by R27oN

0 iy 3 1

1 17

0 —2| by Rz —R,

0 0.

1 171x 0
Thus, we have 0 -2 [y] =10] ...(A)

0 01tz 0

Here, Rank=2, n=3. Since Ran (A) =2 < 3 so system has infinitely many
solutions.
From system (A)

We get x+y+z=0 .(i)
y—2z=0 ...(ii)
From equation (ii), we get: y =2z

Put y = 2z in equation (i), we get: x +2z+z =10
or x+3z=0 or x = -3z
Here, we have only two equations with three variables, so we take one variable
as a free-variable. The value of free-variable will be assumed as a non-zero
real number.
Therefore we consider z =k, k # 0 as free variable.
By using above equations we get: y = 2k and x = -3k
Now the solutions are x = —3k,y = 2k and z =k, ke R-{0}.
By putting different values of k, we will get the different solutions.
Ifk=1,thenx=-3, y=2and z=1.
Ifk=2,thenx =-6, y=4 and z = 2, and so on.
So non trivial solutions are (-3,2,1), (-6,4,2) at k = 1 and k = 2 respectively.

2.6.3 Define a consistent and inconsistent system of linear
equations and demonstrate through examples

Consistent and Inconsistent Systems

1. Consistent System:
A system of equations is said to be consistent if it has one or more
solutions, for example

x+2y=4). . . . . 5
3x + 2y = 2} is consistent because it has a unique solution (—1,7)
x+2y=4

and } is also consistent because it has infinite solutions (0,2), (-2,3), (—4,4), ...

3x+6y=12



2. Inconsistent System:
If a system of equations has no solution, it is said to be inconsistent,

for example
x+2y=4

} is inconsistent because it has no solution.
3x +6y =5

Demonstration for consistency of a system of linear equations

Augmented Matrix:

Augmented matrix of the system of equations AX = B is obtained by
adding constant matrix as the last column of the coefficient matrix and it is
denoted by Ag. Consider a system of a non-homogeneous linear equations in
three variables:

ay1X1 + Q12X; + ay3x3 = by

Az1%1 + AzpX; + Ap3X3 = b,

az1X1 + azpX; + azzxs = b3
In matrix form, the above system of equations can be written as AX = B.
X1 by
le and B= [bzl.

by

X3

a1 Q12 413
az1 Gdzz Q23
az1 dzz 433

Augmented matrix is obtained by adding the constant terms as the last
column of the coefficient matrix.

where A = , X =

Q3 Gz Az by
We have Ag =laz; ay; axs by
as; Az Gsz b3
Consistency Criteria
i. Ifrank of A = rank of Az = n then system has unique solutions
ii. Ifrank of A = rank of Ay < n then system has infinite solutions
where n is the number of unknowns of the system of equations.
Inconsistency Criterion
If rank of A # rank of Ay then the system has no solution.
Example: Check the following system of linear equations to be consistent or
inconsistent. x—y+2z=5,
3x+y+z=38,
2x—2y+3z=7
Solution: We write the above system of equations in matrix form:

AX =B
1 -1 21rx 5
ie., [3 1 1 y]= 8‘
Z 7

2 =2 3




Augmented Matrix = Ag = ]
-2 3 7

4 -5 —7|by R, — 3R,

4 -5 —-7|by R3 —2R,
0 -1 -3i
-1 2 57
4 -5 —7|by (—1)R;3
0 1 31
Here, we can see rank of A = rank of Az = 3 =number of unknowns; so, the

system has unique solutions. Hence the system is consistent.

2.6.4 Solve a system of 3 by 3 mon-homogeneous linear
equations using:
(i) matrix inversion method
(ii) Cramer’s rule
(iii) Gauss elimination method (echelon form)

(iv) Gauss<Jordan method (reduced echelon form)

(i) Matrix Inversion Method

We can solve the following system of linear equations
a11%1 + appx; + ag3xz = by
Az1X1 + AzpX5 + Ap3X3 = by
az1X1 + azyx, + aszx; = bz by using matrix inversion method
which has the following steps:

o Write the system of linear equations in the matrix form AX = B.

e Find A™! if exists.

e Find X by using X = A™1B.

Note: The “Matrix Inversion Method” works when the given system is

consistent and also has unique solution.




Example: Use matrix inversion method to solve the following system of linear

equations, if possible.
3% +2x, —x3=4
2x1 — X5 + 2x3 = 10
Xy —3x, —4x3 =5

Solution: We write the system of linear equations to the matrix form AX = B,

=3(4+6)—2(-8—-2)—1(—6+1) =55

3 2 -1 X1 4
where, A=1[2 -1 2|, X=|X2 andB=[10l.
1 -3 -4 X3 5
3 2 -1
|Al=12 -1 2
1 -3 —4

A1 Az Az ‘
For ad] A= A21 AZZ A23

Az Azp Asg
We find cofactors of A:
_ i+ |1 2 _
All - ( 1) |_3 _4| Y 10;

App = (=D'? |i _24| =10,
Ais = (_1)1+3 |2 —1| = —§
13 1 -3 ’
Ay = (—1)**! |_23 :41}| =11,
Agy = (=1)**? ﬁ :i| =-11,
Az = (—1)**3 ﬁ _23| =11,

Az = (=131 |_21 _21| =3,

ro= 0} S| =8
S i A I
10 10 -51* 10
Now, adjA=[11 -11 11] =[10
3 -8 -7 -5
1 1I10 11 3]
Thus, A'=FadjA ==|10 —-11 -8
A 55
-5 11 -7
4
Now, X=A"1B=A"1 10]
5

11 3
-11 -8
11 -7




X1 (10 11 3 4 1 [ 40+110+ 15 3
ie [le =tx [10 -11 —8] [10] =gg| 40—-110—40 | = [—2]

X3 -5 11 =71 15 —-20+ 110 - 35 1
Thus, x; = 3,x, = —2 and x5 = 1 is the required solution.

(ii) Cramer’s rule

Consider the system of linear equations,
a;1x + ay +a3z2=>by
Ay1X + AppY + Ay3Z = bz} .. (i)
az1x + azpy + azzz = bs

We write the above system of linear equations in matrix form as

AX =B ... (ii)
a1 412 Q413

by
Az Gz Ap3 bz]
asz; dsz dsz b3
To solve the system of linear equations by Cramer’s rule, following steps are
used.
i.  Calculate |A|, if |A| # 0 then go to step (ii) otherwise the method fails.
ii.  Calculate |4,], |A,| and |A5| where,

X
where, A = X = [y] and B =
z

by a;; ag3 a;; by ags ay; Q12 by
Ay = by az; ap3|, Ay =|a1 by, azz|land Az =|az; az; by
b; az; ass asy bz assz az; Az bs
) A A A
iii. Now find x,y and z by using x = %,y = % and z = %

Note: This method works only when the given system has non-singular
coefficient matrix .

Example: Use Cramer’s rule to solve the following system of linear equations.

x+3y+2z=19 e (1)
2x+y+z=13 ... (ii)
4x +2y+3z=31 ... (iii)

Solution:
Write the system of linear equations to the matrix form AX = B
1 3 2|x 19
ie., [2 11 [y] = [13
4 2 31z 31
Now, we find the determinants of 4, 4;,4,and A;.

13 2
4] = 1P 312 Ni2l2 Ye1-6+0=-5=20.
i%é |23| |43|+|42| + *




19 3 2

4] =[13 1 1 =19|]2L §|—3|§§ §|+2|£ %:19—24—10:—15
31 2 3
1 19 2
4,l=12 13 1 =1|£ ;|—19|L2} §|+2|fr é? —8-38+20=-10
4 31 3
1 3 19
B 1 13) L2 13 2 1 _._ _
|A3|—i % g_1|2 31| 3|4 31|+19|4 2|_5 304 0 = =25;
A _ 15 [4o] _ —10 43) _ —25
By Cramersrulex=—=—7=3;y=-—%*=——=2 and z="——5 =——=05.
Y Al T =5 TV T TS Al = =5

Thus, x =3,y =2 and z =5 is the required solution.
(iii) Gauss elimination method (echelon form)

Gauss elimination method is an algorithm for solving system of linear
equations. It is usually understood as a sequence of operations performed on
the corresponding matrix of coefficients. The method is named after Carl
Friedrich Gauss (1777-1855).

This method can be used to solve the non-homogeneous system of
linear equations.

11X + a1,y + a3z = by
az1X + Ay + az3z = b,
az1X +az,y + azz3z = by
Following are the steps of Gauss elimination method:
e Write the system of linear equations to the matrix form AX = B.
¢ Form the augmented matrix by including the constant elements as an
extra column in the coefficient matrix.
e Convert augmented matrix into echelon form by using elementary row
operations.
e Find X by detaching the last column back to its original position i.e.,
on the right-hand side of the equivalent matrix equation to AX = B.
Example: Use Gauss elimination method to solve the following system of
non-homogeneous linear equations:
x+5y+2z= 9
x+y+7z= 6
—3y+4z=-2
Solution:
We write the system of linear equations in matrix form AX = B.



1 5 2 X 9
where, A=(1 1 7 ,X=[y] and B=| 6
0 -3 4 z -2

Forming the augmented matrix by including the constant elements as an
extra column in the coefficient matrix.

1 5 2 9
Ag=11 1 7 6
0 -3 4 -2

Converting augmented matrix into echelon form by using elementary row
operations.

1 5 2 9
Ap ~|0 —4 5 —-3| by R, — Ry
0 -3 4 -2
1 5 2 9
5 3 1
~lo 1 -3 3w ()R
0 -3 4 =2
1 5 2 97
5.3
~19 1 =2 Z|by R, + 3R,
1 1
0 0.7z 7
[1° 5 2 9]
5 3
0.1 -7 3 by 4R5
0 0 1 1]
From the above matrix, we get equivalent matrix equation
x+5y+2z=9 ... (i)
5 3 .
y_ZZ:Z ...(11)
z=1 ... (iii)

From (iii), we get z = 1. Putting z = 1 in (ii) we get y = 2 then from (i), we get:
x+52)+2=9 = x+12=9= x=-3

Thus, x ==3, y=2 and 2z =1 is the required solution.

(iv). Gauss - Jordan Method (reduced echelon form)

Gauss-Jordan method is the modified form of Gauss elimination method
in which the augmented matrix is converted into the reduced echelon form.
Example: Use Gauss-Jordan method to solve the system of linear equations:

x+5y+2z= 9
x+y+7z= 6
—3y+4z=-2
Solution:
Changing the system of linear equations in the form AX = B.



1 1 7
0 -3 4

where, A =

Here
5 9]
Augmented matrix = Az = 1 6
-3

by R, — Ry

-1 by Rz —R3

|
S
NN NS NS, I ORI N [ V)
I
w

by R3 + 3R2

by R1 - 5R2

by Rl - 7R3

OCOFR OOR OORFR OO SoR COoOR OO R OR R

O FRP O OFRPR O OO OFul
=

Find X by detaching the last column back to its original position from the
above matrix.

1 0 0]px -3

We get 0 1 O]y=[2]

0 0 1tz 1
x+0y+0z=-3 . (1)
or Ox+y+0z= 2 ... (i)
Ox+0y+z=1 ... (iii)

From (i), (ii) and (iii) equations, we directly get x = =3,y =2 and z =1 as the
required solution.




ii.

Solve the following homogeneous system of linear equations for non-
trivial solutions, if possible.

x+2y—2z=0 x+4y+2z=0
i) 2x+y+5z=0 (i) 2x+y—-3z=0
5x+4y+8z=0 3x+2y—4z=0
Determine the consistency of non-homogeneous system of linear
equations.
x—2y—2z=-1 x+2y+z=2
i) 2x+3y+z=1 (i) 2x+y+2z=-1
S5x —4y—-3z=1 2x+3y—z=9

Solve the non-homogeneous system of linear equations using matrix
inversion method.

x+2y+z=8 2x—y+2z=4
(i) 2x—y+z=3 (i) x+ 10y —3z=10
x+y—z=0 —x+y+z=-6

Solve the non-homogeneous system of linear equations using Gauss
elimination method.

—-x+y+z=0 x+2y+z=8
(i) x+2y=5 (i) 2x—y+z=3
—3x+2y—z=-2 x+y—z=0

Solve the non-homogeneous system of linear equations using Gauss-
Jordan- method.

x—y+idz=4 2x+2y—z=4
(i) 2x+2y—z=2 (i) x—2y+z=2
3x —2y+3z=-3 x+y=0

Solve the non-homogeneous system of linear equations using Cramer’s
Rule.

x—=2y+z=2 x—2y+0.z=-4
(@) 2x+2y—-z=4 (i) 3x+y+0.z=-5
x+y+0.z=0 2x+0.y+z=-1

Review Exercise 2 )]

Select correct option.
If a matrix A has m row and n column, then order of A is:
(@ mxn (bp)nxm (c) mn (d) m™

Any matrix of order m x 1 is called:
(a) Row matrix (b) Column matrix
(c) Square matrix (d) Zero matrix



iii.  For the square matrix A = [q;;]. If all a;; = 0,i # j and all a;; = k (non
zero) for i = j, then A is called:

(a) Rectangular matrix (b) Scalar matrix

(c) Identity matrix (d) Null matrix
iv. The matrix [7] is:

(a) Square matrix (b) Row matrix

(c) Column matrix (d) all of these
V. (k ABC)t =

(a) kKA'B'Ct (b) kCtBEA! (c) k(BA)® (d) k“(AB)
T T

5 6 3 4

(@) 4 (b) 8 (c) =2 (d) 10

vii. If AB = BA , then which one is true, where A and B are square matrices:
(a) A and B are multiplicative inverses of each other
(b) One of A or B is null matrix.

(c) One of A or B is identity matrix. (d) all of these
viii. If A=[-7], then |A] is equal to:

(@) 7 (b) =7 ()0 (d) Not possible
ix. Let A= [ai j] be a square matrix. Then cofactor of q;; is equal to:

(a) M;; (b) (=DM;;  (c) (—D)YM;; (d) (=D ay;
X. For any triangular matrix A, |A| is equal to:

(a) Product of leading diagonal elements
(b) Sum of leading diagonal elements

(c) Sum of square of diagonal elements
(d) All of these

xi. A square matrix A = [a;;] for which all a;; =0, i <j, then A is called:
(a) Upper triangular (b) Lower triangular
(b) Symmetric (d) Hermitian
xii. * A triangular matrix is always a:
(a) Diagonal matrix (b) Scalar matrix
(c) Square matrix (d) all of these
xiii. A square matrix A is skew symmetric if:
(a) At =A (b) At = —A () (A=A (d) None
xiv. A square matrix A is Hermitian matrix if:
(@) A*=A (b) At=—-A (c) (At =A (d) (A)t=-A
xv. Each diagonal element of main diagonal of a skew Hermitian matrix
must be:

(@ 1 (b) 0 (c) Any non-zero number (d) Any complex number



xvi.

xvii.

xviii.

Xix.

a b|_|12 3
iwfg ol=l7 gl then
(a) a=-3 ba=b (Qa=j ()=
The number of non-zero rows in echelon form of a matrix is called:
(a) Order of a matrix (b) Rank of a matrix
(c) Leading Column (d) Leading row
If A is any square matrix and A = —A! then A is a:
(a) Symmetric matrix (b) Skew symmetric matrix
(c) Hermitian matrix (d) Skew Hermitian matrix
If A is idempotent matrix then:
(a) A* =1 (b) A2 =0
(c) A2 =A (d) A% = A
1 2 4
The cofactor A,, of [—1 2 5 ] is:
0 1 -1
(@) 0 (b) -1 (€)1 (d) 2
. o [x 5 3 —4_017 1
Find the values of x and y if: [7 y — 3] + [1 2 ] = [8 14].
Calculate AC,BC and (A + B)C. Also verify that (A + B)C = AC + BC for
0o 6 7 01 1 2
A=|-6 0 8|, B=|1 0 2, C=|-2]
7 —-8.0 1 2 0 3
if4=[3 | showthata?-54+71=0.
-1 2
1 -3 —4
Find the degree or index of the nilpotent matrix |[-1 3 4
1 -3 -4
1 -2 -6
Show that matrix [—3 2 9 ] is periodic matrix of period 2.
2 0 =3
Which of the following is idempotent or involutory matrix
1 -1 0 0 1 -1
@Jjo -1 0 (i) |4 -3 4
0 0 1 3 -3 4
Which of the following matrices are Hermitian or Skew Hermitian
1 1—-i 2 [ 4 1-i 7
) |-1—i 3i i] l1+i 6 —i]
| -2 i 0 7 i 5




Let A be a square matrix. Show that

(a) A+ (A)! is Hermitian,
(b) A— (A)t is skew Hermitian

Show that

Show that

Solve the following system of linear equations by Cramer’s rule, Gauss

a b c
a+2x b+2y c+2z
x y z

x+y+2z X
z y+z+2x
z X

=0

y

y
Z+x+2y

=2(x+y+2)>

elimination, Gauss-Jordan and matrix inversion methods.

2x+4y—z=0;

x—2y—2z=2 and

—5x =8y + 3z = -2.



