

We will discuss here the theorems and problems related to line bisector and angle bisector.

Definitions:

i) Bisector of a line segment.

A line, ray or segment is called bisector which cuts another line segment into two equal parts.

For example, in the given figure, a bisector of a line segment AB is a line 'L' that passes through the midpoint 'O' of the \overline{AB} .

ii) Right bisector of a line segment.

A right bisector of line segment can be defined as a line which bisects a line segment at 90 degrees.

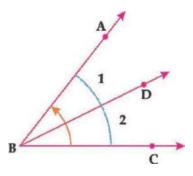
For example, in the given figure, \overrightarrow{CD} is perpendicular to the line segment AB and it passes through its mid-point 'O'. Then \overline{CD} is right bisector of \overline{AB} .

In the given figure, a line \overrightarrow{CD} is a right bisector of \overline{AB} .

iii) Bisector of an angle.

A line or ray or line segment is called a **bisector of an angle** or **angle bisector,** if it divides the angle into two equal angles.

In the given figure, BD is an angle bisector of \angle CBA. BD divides \angle CBA into two equal angles \angle 1 and \angle 2 i.e. \angle 1 \cong \angle 2.



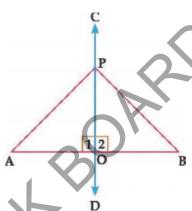
Prove that:

Any point on the right bisector of a line segment is equidistant from its end points.

Given:

CD is the right bisector of \overline{AB} intersecting it at O. P is any point on CD.

To Prove: $\overline{AP} \cong \overline{BP}$, i.e. P is equidistant from A and B.



Proof:

Statements

In $\triangle AOP \leftrightarrow \triangle BOP$

i.
$$\overline{AO} \cong \overline{OB}$$

iii.
$$\overline{PO}$$
 ≅ \overline{PO}

 $\triangle AOP \leftrightarrow \triangle BOP$

$$\therefore \qquad \overline{AP} \cong \overline{BP}$$

But P is an arbitrary point on CD Similarly any other point on CD is equidistant A and B. Hence, every point on the right bisector is equidistant from its end points.

Reasons

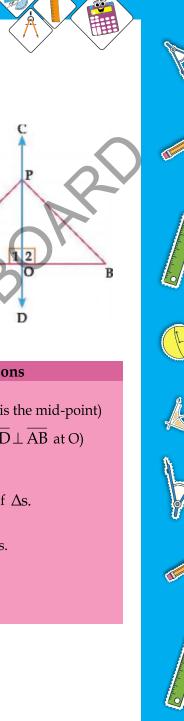
- i. Given (O is the mid-point)
- ii. Given $(\overline{CD} \perp \overline{AB} \text{ at } O)$
- iii. Common

S.A.S postulate

By the congruence of Δ s.

By assumption

By the above process.



Theorem 11.1.2

Prove that:

Any point equidistant from end points of a line segment is on the right

bisector of it. (Converse of the theorem 11.1)

Given:

A and B are two fixed points and P is a moving point such that $\overline{PA} \cong \overline{PB}$

To Prove:

P lies on the right bisector of \overline{AB} .

Construction:

Bisect \overline{AB} at O. Join points P and O.

Proof:

Statements Reasons

In $\triangle POA \leftrightarrow \triangle POB$

- i. \overline{AO} ≅ \overline{OB}
- ii. $\overline{PA} \cong \overline{PB}$
- iii. \overline{PO} ≅ \overline{PO}

ΔΡΟΑ ≅ ΔΒΟΡ

∠1≃∠2

But $\angle 1$ and $\angle 2$ are supplementary angles.

Each $\angle 1$ and $\angle 2$ is right angle.

Thus \overline{PO} is the right bisector of \overline{AB} . Thus every point equidistant from points A and B is on the right bisector of \overline{AB} .

- i. Construction
- ii. Given
- iii. Common

 $S.S.S \cong S.S.S$

By the congruence of Δ s.

AB is a line (supplement postulate)

If two supplementary angles are equal in measure each is right angle.

PO \perp AB and AO \cong BO We can prove by the above process.

- 1. Prove that the point of intersection of the right bisector of any two sides of a triangle is equidistance from all the vertices of the triangle.
- 2. Prove that the centre of the circle is on the right bisectors of each of its chords.
- 3. Where will be the centre of a circle passing through three non-collinear points and why?
- 4. If two circles intersect each other at points A and B then prove that the line passing through their centres will be the right bisector of \overline{AB} .
- 5. Three markets A, B and C are not on the same line. The business men of these markets want to construct a Masjid at such a place which is equidistant from these markets. After deciding the place of Masjid, prove that this place is equidistant from all the three markets.

Theorem 11.1.3

Prove that:

The right bisectors of the sides of a triangle are concurrent.

Given:

A triangle ABC

To Prove

The right bisectors of the sides are concurrent.

Construction:

Draw \overline{NO} , \overline{MO} , the right bisectors of \overline{AB} and \overline{AC} meeting in O. Bisect \overline{BC} at P. Draw \overline{OP} , \overline{OA} , \overline{OB} , \overline{OC} .

Statements	Reasons
\overline{NO} is right bisector of \overline{AB}	Construction
$\therefore \qquad \overline{AO} \cong \overline{OB}$	
Similarly, $\overline{AO} \cong \overline{OC}$	\overline{MO} is right bisector of \overline{AC} .
$\therefore \overline{OB} \cong \overline{OC}$	Each is congruent to \overline{AO} .
P is the mid-point of \overline{BC} .	Construction
\therefore \overrightarrow{OP} is the right bisector of \overrightarrow{BC}	By theorem 11.1.2
Hence right bisector of the sides of a	All of them meet in one point.
triangle are concurrent.	S

Q.E.D

Exercise 11.2

- **1.** Prove that in an acute triangle the circumcenter falls in the interior of the triangle.
- **2.** Prove that the right bisectors of the four sides of an isosceles trapezium are concurrent.
- **3.** Prove that the altitudes of a triangle are concurrent.

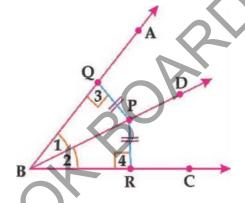
Theorem 11.1.4

Prove that:

Any point on the bisector of an angle is equidistant from its arms.

Given:

BD is the bisector of \angle ABC. P is any point on \overrightarrow{BD} . \overrightarrow{PQ} and \overrightarrow{PR} are perpendiculars on \overrightarrow{BA} and \overrightarrow{BC} respectively.



To prove:

 $\overline{PQ} \cong \overline{PR}$ (i.e. point P is equidistant from BA and BC)

Proof:

Reasons **Statements** In $\triangle PQB \leftrightarrow \triangle PRB$ ∠3≅∠4 i. Each is a right angle ii. ∠1≅∠**2** ii. BD is bisector (Given) iii. Common iii. BP≅BP ΔPQB ≅ ΔPRB A.A.S≅ A.A.S $\overrightarrow{PQ} \cong \overrightarrow{PR}$ By the congruence of Δs . (i.e. P is equidistant from BA and BC)

Prove that:

Any point inside an angle, equidistant from its arms, is on the bisector of it. (Converse of Theorem 11.4)

Given:

P is any point of BD equidistant from the arms BA and BC of ∠ABC, i.e. $\overline{PQ} \cong \overline{PR}$ and $\overline{PQ} \perp BA$ and $\overline{PR} \perp BC$.

To Prove:

 $\angle 1 \cong \angle 2$, i.e. BD is bisector of $\angle ABC$.

Proof:

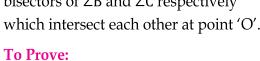
Statements Reasons In $\triangle PQB \leftrightarrow \triangle PRB$ Corresponding in right Δ s i. ∠3≅∠4 i. Each is a right angle ii. $\overline{PQ} \cong \overline{PR}$ ii. Given iii. Common hypotenuse iii. $\overline{BP} \cong \overline{BP}$ $\Delta PQB \cong \Delta PRB$ In right triangles H.S≅ H.S $\angle 1 \cong \angle 2$, By the congruence of triangles. (i.e. BD is the bisector of $\angle ABC$)

Prove that:

The bisectors of the angle of a triangle are concurrent.

Given:

In $\triangle ABC$, \overline{BE} and \overline{CF} are the bisectors of ∠B and ∠C respectively which intersect each other at point 'O'.



The bisectors of $\angle A$, $\angle B$ and $\angle C$ are concurrent.

Draw $\overline{OF} \perp \overline{AB}$ and $\overline{OD} \perp \overline{BC}$.

Proof:

Statements	Reasons	
In correspondence $\overline{OD} \cong \overline{OF}$ (i) Similarly $\overline{OD} \cong \overline{OE}$ (ii)	A point on bisector of an angle is equidistant from its arm.	
$\overline{OE} \cong \overline{OF}$	From (i) and (ii)	
So, the point O is on the bisector of $\angle A$. Also the point O is on the bisectors of $\angle ABC$ and $\angle BCA$	Given	
Thus, the bisectors of $\angle A$, $\angle B$ and $\angle C$ are concurrent at O.		

- **1.** Two isosceles triangles have a common base, prove that the line joining vertices bisects the common base at right angle.
- **2.** If the bisector of an angle of a triangle bisects the opposite side, prove that triangle is an isosceles.
- 3. In an isosceles $\triangle ABC$, $m\overline{AB} = m\overline{AC}$. Prove that the perpendiculars from the vertices B and C to their opposite sides are equal.
- **4.** Median of a triangle is a line segment joining the midpoint of side to the opposite vertex. Prove that medians of an equilateral triangle are congruent.

Review Exercise 11

- **1.** Prove that, if two altitudes of a triangle are congruent, the triangle is an isosceles.
- 2. Prove that, a point in the interior of a triangle is an equidistant from all the three sides' lies on the bisector of all the three angles of the triangle.
- **3.** Write **'T'** for True and **'F'** for False in front of each of the following statements
 - (i) Bisection of side means, we divide the given side into two parts.
 - (ii) In a right angled an isosceles triangle each angle on the base is of 45°.
 - (iii) Triangle of congruent sides has congruent angles.
- **4.** Choose the correct option:
- (i) There are _____ acute angles in an acute angled triangle.
 - (a) One (b) Two
- (c) Three
- (d) None
- (ii) An point equidistant from the end points of a line segment is on the of it.
 - (a) Right bisector

(b) Perpendicular

(c) Centre

- (d) Mid-point
- (iii) ______ of the sides of an acute angled triangle intersect each other inside the triangle.
 - (a) Perpendicular

(b) The right bisector

(c) Obtuse

- (d) Acute
- (v)The bisector of the angles of a triangle are _
 - (a) Concurrent

- (b) Collinear
- (c) Do not interest
- (d) Unequal

- A bisector of a line segment divides the line segment into two equal parts
- Right bisector cuts the line segment into two equal parts at 90°.
- Any point on the right bisector of a line segment is equidistant from its end points.
- Any point is equidistant from the points of a line segment is on its right bisector.
- ♦ The right bisectors of the sides of a triangle are concurrent.
- Any point on the bisector of an angle is equidistant from its arms.
- Any point inside an angle, equidistant from its arms, is on its bisector.
- The bisectors of the angles of a triangle are concurrent.

