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Enjoying on a swing, having a smooth drive on a bike or car on a bumpy road and in today’s

n world the most fearsome form of entertainment is bungee jumping. Physics involve in
e thrilling phenomena, the motion of a bungee jumper is called Simple Harmonic Motion

(SHM).

In this unit student should be able to:

Describe necessary conditions for execution of
simple harmonic motion.

Investigate the motion of an oscillator using
experimental and graphical methods.

Describe that when an object moves in a circle,
the motion of its projection on the diameter of
circle is SHM.

Define the terms amplitude, time period,
frequency, angular frequency and phase.

Identify and use the equation a = -@’x as the
defining equation of SHM.

Prove that the motion of mass attached to spring
is SHM.

Analyze the motion of a simple pendulum is
SHM and calculate its time period.

Interpret time period of the simple pendulum
varies with its length.

Describe the interchanging between kinetic
energy and potential energy during SHM.
Describe practical examples of free and forced
oscillations (resonance).

Describe graphically how the amplitude of a
forced oscillation changes with frequency near to
the natural frequency of the system.

Describe  practical examples of damped
oscillations with particular reference to the efforts
of the degree of damping and the importance of
critical damping in cases such as a car suspension
system.

Describe  qualitatively the factors which
determine the frequency response and sharpness
of the resonances.




Along with transnational and circular motion,
vibratory or oscillatory motion is one of the most
important kinds of motion.

Oscillatory motion is a periodic motion which
repeats itself in equal interval of time.

A very common and widely experienced example
of vibratory motion is sound.

Other examples of oscillatory motion are;

» Consider a bird in flight flaps its wings up and
down. (Fig.11.1)

» A flat strip of metal clamped at one end on the
base of table can oscillate up and down when
pressed and released from unclamped end.

» A mass suspended by an elastic spring when
pulled down and released

» The motion of the bob of simple pendulum
when displaced from its mean position and

released.

» The atoms or molecules in solid substances
oscillate  about their mean  position.
(equilibrium)

» Tall buildings and bridges seem to be rigid but
they oscillate about their mean position

The vibrations or oscillations occur near the point

of stable equilibrium of a particle or system of

particles.

“An equilibrium point is stable if the net force

acting on the particle for its displacement from

equilibrium points back toward the equilibrium

point. Such a force is called restoring force”.

Since it tends to restore equilibrium of the particle

(Fig.11.2).

11.1 Simple Harmonic Motion:

Simple Harmonic Motion (SHM) is a type of
oscillation or vibratory motion produced under the
action of restoring force.
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Fig: 11.2
(a) A point of stable equilibrium for a

roller-coaster car. If the car is displaced
slightly from its position at the bottom of

the track, gravity pulls the car back
toward the equilibrium point. (b) A point

of unstable equilibrium for a roller-

coaster car. If the car is displaced
slightly from the top of the track the
gravity pulls the car away from the
equilibrium point.
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11.1.1 The necessary conditions for the execution of simple harmonic motion are;

1. The restoring force shall be directly proportional to the displacement from equilibrium
position.

2. The restoring force shall be proportional to the inertia (elastic limit) of the system
executing SHM.

3. The displacement from the equilibrium point on either side should be small.

4. The force and displacement should follow the Hooke’s law (F = -kx), where £ is
‘spring constant or force constant’ depends upon the nature of material of spring.

5. Acceleration of the oscillating object should be proportional to the
displacement (@ o« —x), the negative sign indicates that acceleration is directed
towards the equilibrium position O.

11.1.2 Motion of an Oscillator:

(Experimental methods)

Consider a system of “the mass and spring system” oscillating in horizontal and vertical
directions executing simple harmonic motion.

Horizontal Mass-Spring System:

Consider a spring with spring constant k& and [ — F nlex
negligible mass. An object of mass m is attached i AT [ 1]
to one end of the spring whose other end is fixed T F =box
by a rigid support as shown in Fig.11.3. The | | i
spring-mass system can slide on a frictionless A A A A S e
horizontal surface. Since the normal reaction force - &
R on the object is balanced by the weight (mg), _ SR
the net force acting on the object is due to spring. ALRLRLY e S S
When the spring is at mean position the net force A L A =
is zero; and the system object is in equilibrium. Fig: 11.3
If a force F'is applied on the object to pull it along (A horizontal spring mass system to
the horizontal surface towards right side. The  understand the simple harmonic motion
object is displaced from its equilibrium point O under elastic restoring force)
for a distance x.

F xx
or F=k ... (11.1)

“Due to elasticity, the force (equal and opposite) obeying the Hooke’s law and is stored in the
spring - mass system called elastic restoring force”.

The motion of an object under an elastic restoring force about a fixed point (equilibrium
point O) between two extreme point (A, -A) at equal distance from O is a type of
oscillatory (vibratory) motion called Simple Harmonic Motion (or SHM).

So restoring force is,
Fres = —kx veenn(11.2)
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where the negative sign indicates that the elastic restoring force is opposite in direction to the
displacement from equilibrium point.

If, now the object is released from A, it begins to oscillate about the equilibrium position
between two points A and —A

Using F = ma from Newton’s second Law of motion in equation 11.2
We have;

ma = —kx

k

a=-——x . (11.3)

Thus, the acceleration and displacement are always in opposite directions.
k . .. . . .
As; — Is a constant; so whenever the acceleration is a negative constant times the displacement
the motion is SHM.
a < —x

The acceleration of a body executing simple harmonic motion at any instant shall always be
proportional to displacement and is always directed towards its equilibrium position.

Self-Assessment Questions:
1. Describe the motion of a mass-spring system in simple harmonic motion (SHM).
2. What are some real-world applications of mass-spring systems?

Graphical representation of SHM:

To understand the simple harmonic motion graphically, we set up an experiment (Fig. 11.4a)
with an object attach to a spring. The object oscillates with a maximum displacement x, from
its equilibrium position. At the same moment a pin projected up and fitted on a horizontal
circular disc of radius R = x, is set into motion with constant angular speed ®. The two objects
are set into motion at same instant.

Fig: 11.4 (b)

The motion of the pin
moving counter clockwise
around a circle of R = x, as

the disc rotates with
constant angular speed .

Fig: 11.4 (a) an experiment to show the relation between
uniform circular motion and simple harmonic motion

T \—
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Both the pin and the object attached to the spring are Displacement
illuminated so that the shadows of the pin on the x =x°cosoot

rotating disc and the oscillating object are seen on x=x_ |
the screen. The speed of the disk is adjusted until the
shadows oscillate with the same period.

Displacement- time (x-t) graph:
We analyze the uniform circular motion of the pin P

fitted on a disc of radius x,. Figure 11.4(a, b) shows
that the pin moves counter clock wise along the e
circle of radius x, with constant angular velocity w. 0 (AT TEMTT (ST (3/2)T

the displacement — time graph shown in figure 11.5.
Let at an instant 7 = 0 the pin starts at A. The position
of projection Q is also at A i.e. x = x,. (Fig.11.4b) v=v__sinot Velocity

When pin covers the quarter of its rotation in ¢ = iT o
. . . . v=v 1
the projection Q is at x = 0 and reaches at B in next e
%T . Same motion is now repeated from B to A in
- : . =0 {2 =
next %T . Similar pattern can be seen in the motion of ’
object attach to the spring.

At any time 7 = ¢ the angular displacement of the pin S

is given by; e t
H(t ) — a)t 0 (1/4)T (1/2)T(3/4)T T (5/4)T (3/2)T

One complete cycle

Fig: 11.5 Displacement time graph

The motion of pin’s projection (shadow) Q on the
screen has the same x-component as the pin itself.
Consider a right angle triangle OQP, (Fig.11.4b) we
find that

x(t)=xo,cos 8 =x,cos wt...... (11.4)

Fig: 11.6 Velocity-time graph

Acceleration
Velocity — time (v-t) graph: @, L COSOL
The comparison of velocity — time graph shown in a=a__
figure 11.6 and the displacement —time relation in
figure 11.5 explains the interrelationship between
the displacement and velocity of the object a=
executing SHM. The shape of the curve for
velocity - time relation is also same as that of A
displacement - time graph (Fig.11.7), but the 1 A

displacement time graph is one quarter ahead of e
0 (1/4)T (1/2)T(3/4)T T (5/4)T (3/2)T

B

velocity time graph (Fig.11.6). At time t =11T
the mass is at equilibrium position O and this is the Fig: 11.7 Acceleration-time graph
point where the velocity is maximum.
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Acceleration — time (a-t) graph:
In figurel1.7 the relation between acceleration and time is described. At ¢ = ZlT the object is at

O and there is no net force acting on it so its acceleration is zero, although the velocity is
maximum at equilibrium position. As the object is displaced towards right hand side under the
action of a net force F =kx, the restoring force F =-kx will act towards left, produces a negative
acceleration in the object.

The figure 11.8 shows that acceleration graph is 180° out of phase with displacement graph.
This shows that (a x —x)

= Displancement

— Fl!ﬂitﬂ

— Aczeleration

L T L] L] L] 1 T 1 I
O [T IREATIMEET T MY R
Fig: 11.8

The graph is showing the inter relationship between displacement, velocity and acceleration. At
t=0 the displacement is ;—t radians ahead of velocity and reaches at its positive maximum one

quarter cycle ahead of velocity. Likewise acceleration is following one quarter cycle to velocity
and one half cycles to displacement to reach its positive maximum.

11.2 Uniform Circular Motion and SHM:

The motion of the pin in figure 11.9 a is considered as uniform circular motion. It possesses
centripetal acceleration directed towards the center of circle. We know that, the magnitude of
centripetal acceleration is given as

ap = 0*r = w*, . (11.5)

From figure (11.9) and , the motion of P is along the circumference but its projection Q is
oscillating along the diameter AOB. The acceleration of projection Q will be a component of
centripetal acceleration of P.

11.2.1 Motion of the Projection of a Particle Moving Along a Circular Path:

In order to establish that projection Q of the particle P, moving along the diameter AOB
executes simple harmonic motion as shown in figure 11.9. We shall derive the expression for
the acceleration of Q, by resolving the centripetal acceleration of particle P ap into its
rectangular components.
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Fromeq. 11.5.

ax=w*,cos 0 ... (11.6)

and

ay=w'x,sin ... (11.7)

Since ayx is the component along the diameter AOB

and always directed towards the equilibrium L

position O. At any instant 7 the direction of the
acceleration vector is opposite to the direction of
the displacement vector. Therefore;

ay=—w'x,cos 0 ... (11.8)
Consider the right angle triangle OQP (Fig.11.9)
X
cos = = Fig: 119 *
Substituting the value of cos #ineq. 11.8 Motion of particle mc;]vmg along circular
We have; ax = —w’x pat
or ¥y
ax=o*(—x) ... (11.9)

Since; @ is a constant so w’ is also a constant,
therefore the acceleration a, of projection Q
moving along the diameter AOB is proportional to
the displacement x, complying with the
characteristic property of SHM which is;

ay X —x

Velocity of Projection Q:

The linear velocity v of the particle P moving along
a circular path at any instant ¢ and at any point on
the circumference shall always be tangent to the
circle and perpendicular to the radius of circular
path. The magnitude of linear velocity is given as;
w=oxe (11.10) 5 A

As the projection Q is oscillating along the  Fig: 11.10 velocity of projection
diameter AOB and its motion is due to the motion of P. Therefore the velocity of Q can be
determined by resolving vp into its rectangular components as shown in figure.11.10.

Uy ml = oy mind

Vx = vp Sinf and vy = vp c0SO
Therefore; vo=vpsind ... (11.11)
From eq. 11.10, vp = wx, thus vo= wx, sin@  ...... (11.12)
Consider the right angle triangle OQP.
cos ==
Xo
Using; sin?0 +cos’0=1 and sin®0 = 1— cos’) = 1— i—j

Therefore; sinf = ’1 - %
Xo
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Putting the value of sinf in eq.11.12
vo=ox, (1-=5 ... (11.13)

Eq. 11.13 represents the instantaneous velocity of projection Q depending upon the position
(x) of Q from equilibrium position.

For maximum velocity; x = 0 i.e. the projection shall be at equilibrium point O and eq. 11.13
becomes

Vmax = WXo  ceeees (11.14)

The velocity shall be minimum if the projection is at the end points of diameter i.c. at A or B,
such that x =x,.

Relation between Linear and Uniform Circular Motion:
Since; an oscillating mass attached by an elastic spring (horizontal or vertical) and an object
moving along a circular path with constant angular velocity ® has already been proved are
executing SHM.
From egs. (11.3 and 11.9)

k

—COZX = ——X
m

Therefore; o= |— ... (11.15)

11.2.2 TImportant terms used in SHM:

Instantaneous Displacement and Amplitude:

When an object is executing SHM, either in spring-mass system or in uniform circular motion
its position from its equilibrium point is changed continuously. At any instant ¢ the distance of
the object from its equilibrium position is called instantaneous displacement (x). The
maximum change in its position is observed when the object is at extreme points i.e. at A or —
A (Fig.11.3) or at A or B (Fig.11.5) and the displacement is now termed as Amplitude (x,).

Period, Frequency and Angular Frequency:

Simple harmonic motion is a periodic motion under the action of elastic restoring force, a body
executing SHM repeats the same motion again and again. To complete one cycle or rotation of
motion the object must be at the same point and in same direction as it was at the start of the
cycle. The same analogy is applied for uniform circular motion.

Time period (7): It is the time taken by the object to complete one cycle of oscillation.
Frequency (f): It is the number of cycles (oscillations, vibrations, and rotations) completed per
unit time.

Angular Frequency (w): It is defined as the ratio of the angular displacement or change in
angle (0) to the time taken (t) to undergo that change. Mathematically, it is expressed as:
o=A0/At
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Since the object in Spring-mass system and
the pin in uniform circular motion both
executing SHM, so we can develop a relation
between o, fand 7.

Using; 0=0T
where for one complete cycle 6 = 27 radians.
It gives; 7= since f = 2
gives; - T
Fromeq.(11.18) o = \/%
Therefore; eq. (11.19) becomes
_1 |k
f_ 2\ m
(11.21)
and
T=2m \/% ...... (11.16)

It is important to note that in spring-mass
system the quantity ® is called the angular
frequency. It is also be marked that in
spring-mass system the @ depends upon mass
and spring constant and independent of
amplitude.

Phase:

From the discussion we made regarding the
displacement and velocity of the particle
executing SHM. It is clear that both
displacement and velocity are the function
of angle (0 = wt).

The Phase is the state of motion of a
vibrating object in terms of position and
direction.

As the particle is rotating along the
circumference, its projection Q moves back
and forth along the diameter AOB. Att =0
the angle between OP and the reference
radial line OA is ¢, which is called the initial
phase. At some later instant t the angle
between OR and OA would be wt + ¢. The
phase is Zero at starting point i.e. at
equilibrium position A (Fig. 11.11 b) and it
would be % at extreme point O.

()

19

R — ot
0 n/2 n3n/2 2n
Fig: 11.11
(a) Motion of a particle along a circular path
and

(b) The waveform of the particle motion with
an illustration of PHASE.

Fig: 11.12
Astronaut Millie Hughes-Fulford
a body-mass measurement device developed
for determining mass in orbit.
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Consider the right angle triangle OQP from figure 11.11 a, the displacement of point Q from
the mean position with respect to position R is given by
xX=xcos(ot+o) ... (11.17)

. Worked Example 11.1 |

The spring used in one such device shown in Fig.11.12 has a spring constant of 606 N/m, and
the mass of the chair is 12.0 kg. The measured oscillation period is 2.41 s. Find the mass of the

astronaut.

Step 1: Write the known quantities and point out the quantities to be found.
Spring Constant; k =606 Nm™'

Mass of chair;  mchair = 12.0 Kg

Time period; T =2.41s

Step 2: Write the formula and rearrange if necessary.

Since the astronaut and chair are oscillating in simple harmonic motion, the total mass (72tta1 =
Mechair T Mastronaut) OF the two is related to the angular frequency ® which is related (Eq.11.20) to
period of oscillation as

T =21 Mtotal
k

Squaring on both sides and rearranging the above equation.

_ T?k
Mtotal = )
Hence the expression for mass of astronaut;

_ T?%k
Mastronaut = m = Mchair
Step 3: Put the values in the formula and calculate.
2

mastronaut = % = 12.0 = 77-2 Kg

T 9
" KNOW S

Astronauts who spend a long time in orbit measure
their body masses as part of their health-maintenance
programs. On earth, it is simple to measure body
weight by a scale. However, this procedure does not
work in orbit, because both the scale and the astronaut
are in free fall and cannot press against each other.
Instead, astronauts use a body-mass measurement
device, as shown in Figure. The device consists of a
spring-mounted chair in which the astronaut sits. The
chair is then started oscillating in simple harmonic
motion. The period of the motion is measured
electronically and is automatically converted into a
value of the astronaut’s mass, after the mass of the
chair is taken into account.
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Worked Example 11.2

A block is kept on a horizontal table. The table is undergoing simple harmonic motion of
frequency 3 Hz in a horizontal plane. The coefficient of static friction between the block and
the table surface is 0.72. Find the maximum amplitude of the table at which the block does not
slip on the surface.

Step 1: Write the known quantities and point out the quantities to be found.

Frequency; f =3 Hz
Coefficient of friction; p =0.72
Amplitude; Xo =7
Step 2: Write the formula and rearrange if necessary.
Since a=
Maximum force of static friction is given as
F = umg
In case that the body does not slip;
ma = pumg
or m 0*x, = pumg
and Xo = g /0’ = ng /(2nf)?

Step 3: Put the values in the formula and calculate.
Amplitude (x,) = 0.72 x 9.8/(2 x 3.14 x3)*=0.0198m or 1.98cm

Self-Assessment Questions:

1. Figure A shows a 10-coil spring that has a spring constant k. When this spring is cut in
half, so there are two 5-coil springs, is the spring constant of each of the shorter springs
remains same or changed?

2. The drawing in figure B shows plots of the displacement x versus the time ¢ for three
objects undergoing simple harmonic motion. Which object I, II, or III has the greatest
maximum velocity? o

X
A
A .
k Objectl ' = +¢
UM = s " -
: . |"|""_|'| i
Applied Object I1 % 558 o ) |I i 1
_Fx 1 II | |_ i | { .I |
Ut
| ObjectIIT % + = .".
'311\11 ""—FApplied =
Figure. A Figure. B

—




11.3 Practical SHM Systems:

11.3.1 Motion of a Mass Attached to a Spring:
An oscillating mass on a vertical spring also
exhibits SHM. The main difference between
horizontal and vertical examples is that, in vertical
motion of spring-mass system the equilibrium
point is moved down under the gravity. Fig.
(11.13 a, b, ¢)

In this example we will consider an ideal spring

of negligible mass that obeys Hooke’s law. position

Suppose an object of mass m and weight mg is
hung from the spring with spring constant k. The
spring is stretched downward under the gravity to
a distance d from its relaxed point A and settled at
O the equilibrium position. Taking y - axis in
upward direction the net force acting on mass at
equilibrium is
Free=kd—mg=0 ... (11.18)

If the object is raised from the equilibrium point O
to a position B up to a distance of y, the spring

Unit 11: Oscillations

E = =
= = =
A = =
I
= B yed
Reloawed :_"
Eguilibrium
position yed
-B
Fig: 11.13

a) A relaxed spring of spring constant k
at A.

b) The spring is stretched downward
under the gravity and reaches at
equilibrium point O.

¢) The spring is raised to a distance v

force is less than kd.
The spring force will be
Fua=k(d )
If upward direction of y is taken as positive then the net force acting on the mass at B is
Fuet = k(d —y) —mg
Froet =kd —ky —mg

From (11.1)  kd =mg; therefore,
Fnet=—ky ...... (11.19)
As k is a spring or force constant, therefore;

Fhet X -y
The restoring force is directly proportional to the displacement from equilibrium point and
directed towards the equilibrium position.
Therefore, the vertical mass — spring system exhibits SHM.

Simple Pendulum:

A simple pendulum consists of a point mass suspended from a fixed point by a mass less
inextensible string of length L. At equilibrium the weight (W = mg) balances the tension T
along the string. If the mass is displaced to one side and then released, we assume that for
small amplitude, the mass moves back and forth along the x-axis.

Suppose at any instant the pendulum makes an angle 6 with verticle axis. At A the weight mg
may be resolved into its rectangular components




Unit 11: Oscillations

The radial component of the weight along the string
mgcos® balances the tension T along the string
(Fig.11.14). The tangential component mgsin® provides
the necessary restoring force.

Hence F=-—mgsin0 ... (11.20)
We expect the restoring force to be proportional to the
displacement for small oscillations. Note that the
restoring force is proportional to sin0 rather to 0.
Moreover if the displacement is large i.e. 0 is large the
motion is no longer be SHM.

However if 0 is small and taken in radians then

sind =~ 0

Hence eq. (11.20) can be re-write as

F=—mg9

Considering F' = ma from Newton’s second law of

motion and substituting in above equation we have e sin
Since point O is very close to point A, therefore OA is Motion of simple pendulum.

considered to be a straight line. Using

s=r10 from figure 11.14
Where s = x the arc length OA andr=L ?

Then g = E KNOW

Substituting 0 in eq.(11.21), we have Physical Pendulum

=—(9)x (11.22) Arm
Since % is a constant T
Hence;

a = constant (— x)

Or a < —x
Since; acceleration is directly proportional to
displacement and directed towards the equilibrium Contrary to simple pendulum, where
position, Hence motion of simple pendulum is the mass is concentrate at a point. If
SHM for small amplitudes. the mass is uniformly distributed like

arms swing and legs movement of a
man walking shown in Fig.11.18 then
itis called Physical Pendulum.
When we walk, our legs alternately
swing forward about the hip joint as a

Time Period of Simple Pendulum:

Time period of the simple pendulum is the time
required to complete one oscillation.

To id:entify the angular frequency we recall that pivot. In this motion the leg is acting
equation 11.9 approximately as a physical
a=—o’x (11.9) pendulum.

Comparing equations 11.9 and 11.22
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L |
Therefore the time period is \ KNOW‘

T = m 2T \/Z ______ (11.23) It is important to note down that,
@ 9 in case of simple pendulum the

; o is considered as the constant
Self-Assessment Questions: angular frequency of simple
1. Describe the relationship between the period and the pendulum, rather than the
gravitational acceleration (g) for a simple pendulum. angular velocity (rate of change
2. How does the mass of the pendulum bob affect the of angular displacement will
period? change with time from zero to
maximum). Even both have the

11.4 Energy Conservation in SHM: same ST unit (radians’s).

Consider a spring-mass system, when the mass is pulled
towards right and released it moves towards the
equilibrium position. The figures 11.3 — 11.15 suggest
that the speed is greatest as the object passes through the
equilibrium position. The object slows down as it reaches
to the end points. This phenomenon indicates the inter
conversion of kinetic and potential energies of the system
at different points. We will see that these conversions
will support the law of conservation of energy.

The total mechanical energy of the system at any instant
shall remain constant.

E = kinetic energy + Potential energy

11.4.1 Inter Conversion of Kinetic and Potential
Energies during SHM:

Kinetic Energy (K) of the Oscillator:

Since the kinetic energy at any instant of the system F- VAV VaTaVal 7
is given by F -
K=1mv2 ... (11.24) S VWWWARSD
Where; v is the instantancous velocity of the — » “A4AANY -0 I
system. From egs. (11.13) and (11.15) —
5 T
1 k X

K= M [x"\/; 1- E] Fig: 11.15 (A) The total mechanical

1 2 9 energy of this system is entirely elastic
K= 2 k(x5 -x%) (11.25) potential energy (B) partly elastic

potential energy
and partly kinetic energy (C) and entirely
kinetic energy.

?\—
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Eq.11.25 represents the instantaneous kinetic energy of the object executing simple harmonic
motion.

Since the speed is maximum at equilibrium position
i.e. at x = 0. Therefore eq. (11.25) for maximum
kinetic energy of the object at equilibrium point.

1
Kmax = E kx%

As the object is instantaneously at rest on extreme

position, where v =0 and x = xo.

Therefore;

K= Sk@xZ-x2)=0

_PE
— ILE

Energy [E] joule

L .1 o8 O 68 1 LS
Displacement (x cm

Fig: 11.16 The graph shows the
elastic potential energy and kinetic

Potential Energy (U) of the Oscillator:
Figure 11.15 suggests that the net force on the

oscillator at O is F, = zero and at extreme point i.e. at energy as a function of position, for a
A, it is F'a = kx. The average applied force exerted on mass oscillating on a spring.
the system in displacing it from O to A is DO YOU ,
\ KNOW.
Fp=ltotfa Ot Ly (11.26)
2 2 2
——

The work done in moving the object from O to A,
against the elastic restoring force

W=Fox=2k? ... (11.27) ,
2 Compressed spring
This work is stored in the spring-mass system as its FIFrrrerse
elastic potential energy U as shown in figure (11.16). CXEEERR VLY S
Eq. 11.41 is re-written as A door-closing unit. The elastic
potential energy stored in the
U= Yer (11.28) compressed spring is used to close
2 the door.

Eq.11.27 expresses the instantaneous elastic potential energy of the object executing simple
harmonic motion.

Mathematically, in general and practically eq. 11.28 depend upon x, the instantaneous
displacement. Hence the potential energy shall be maximum at (x = +x,) are the extreme
positions.

Unn=3ked L. (11.29)

and minimum at O where x =0
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Total Energy (E) of the Oscillator:

Using equations 11.25, 11.28 and expression of total Total **nﬂ'lf
energy of a system executing SHM can be found as |
shown in figure 11.17. = —— s ]
E= ck(xZ-x?)+ -k L (11.30) T
It gives the total energy of a body executing SHM ata g ~
distance x, from the equilibrium position. i.
Simplifying eq. 11.30 |
E=-keZ L (11.31)
The graphs show that the elastic potential energy is zero ) %
where the displacement is zero and maximum at extreme v ' ' "

T et Emw @ o7 v

position. Contrary to P.E, kinetic energy is maximum at "
Fig: 11.17

zero displacement i.e. at equilibrium position and

minimum at extreme positions. ; \

The total energy of a body executing SHM at

any point is constant. ' .III 114* 2 _
=4 3 i

11.5.1 Free and Forced Oscillations: ‘i

In simple harmonic motion, we assume that no Fig: 11.18
dissipative forces such as friction or viscous drag of ~ Damped Oscillation. A girl is swinging
air exist. Since the mechanical energy is constant, on a swing. Damping occurs and the

swing will oscillate with smaller and

the oscillations supposed to be continued forever )
smaller amplitude and eventually stop

with maximum amplitude.

Free Oscillations: L]
The observation of the motion of an object | ul

executing SHM indicates a gradual dying out of i

amplitude of oscillations. 5
The amplitude of each cycle is a little smaller than :
|

that of the previous one (Fig.11.18), This motion is i
called damped oscillation. ! A

¥
=i

The word damped is used in the meaning of
extinguished or restrained (locked up). For a small Ll

amount of damping, oscillations occur at 1

approximately the same frequency as if there were t .

no restrained forces fig.11.19a. An increase in I o

damping decreasgs the frequency .(Fig.l 1.19b,c) Fig: 11.19

even more damping prevents oscillations from Graphs of displacement x(t) for a system executing

occurring at all (Figl1.19 d). SHM, with increasing amount of damping a),b),c)
and d).

Graph d) shows that the damping is quite large to
stop the oscillation.
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11.5.2 Forced Oscillations and Resonance:

When damping forces are present, the only way to keep the amplitude of oscillations from
diminishing is to replace the dissipated energy from some other source. When a child is being
pushed on a swing, (Fig.11.20) the parent replaces the energy dissipated with a small push.
This push keeps the amplitude of motion constant. Every time the parent gives a little pushes
once per cycle that compensates the dissipated amount of energy in one cycle. The frequency
of the driving force (the parent’s push) matches the natural frequency (The frequency at which

it would oscillate on its own) of the system.

Resonance:

Forced oscillations occur when a periodic external
driving force (push of parent) acts on a system that
can oscillate. The frequency of driving force does not
have to match the natural frequency of the system.
With this driving force the system starts to oscillate
with a frequency of driving force although it is far
from its natural frequency. However the amplitude is
not greatly affected as long as the frequency of
driving force is closed to the natural frequency of the

system.

If the frequency of external driving force f is
continued to increase and if it becomes equal or
integral multiple of natural frequency f; of the system

such that
ﬁxternal =ﬁ or= Zﬁ or= 3ﬁ

The amplitude of the motion is maximum, this

Fig: 11.20 Forced Oscillation
The applied a certain force to keep the amplitude of oscillation constant.

condition is called resonance.

At resonance the driving force is always in the same
direction as the object’s velocity. Since the driving
force is always doing positive work, the energy of the

or=nf;... (11.32)

€I 9
| KNOW S

MRI magnetic Resonance Imaging

system.

Resonance has a very wide range of
use in the medical science. Only MRI
provided sufficient information about
the patient’s disease then it is a useful

tool.it allows us to see inside the

human body with amazing detail, by
using magnets and radio waves.it

uses magnetic fields and radio waves
to measures how much water is in
different tissues of the body, maps
the location of the water and then
uses this information to generate a
detailed image. The images are so

detailed because our bodies are made

up of around 65% water,
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oscillator builds up until the dissipation of energy balances the energy added by the driving
force. For an oscillator with little damping, the amplitude becomes large (Fig.11.21). When the
driving force is not at resonance, some negative work is stored in the system. Hence the net
work done by the driving force decreases as the driving frequency moves away from the
resonance. Therefore the oscillator’s energy and amplitude is smaller than at resonance.
Amplitude
i

L Hm=nl damping

I L

1 e 3
Driving Fregqueney
Fig: 11.21
The curves show a relation between amplitude and driven frequency of a harmonic oscillator. The
curves represent the same oscillator with the same natural frequency but with different amounts of
damping. Resonance occurs when the driving frequency equals the natural frequency.

11.5.3 Practical Example of Damped Oscillations

Damping is not always disadvantageous. An example of damped oscillation can be seen in a
shock absorber used in vehicles as shown in figure 11.22. A shock absorber is a device that is
integrated into the suspension system of a car or motorcycle. Its primary purpose is to dampen
the oscillations caused by irregularities in the road surface or when the vehicle encounters
bumps. In order to compress or expand the shock absorber viscous oil must flow through the
holes in the piston. The viscous force dissipates energy regardless of which direction the
piston moves. The shock absorber enables the spring to smoothly return to its equilibrium
length without oscillating up and down.

Shock sbsorber

L
r.-LI (g T}
Suspenilon spring . 'k

Fig: 11.22
shock absorbers mounted in the suspension system of an automobile, with a simplified cut away view of
the shock absorber.
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11.5.4 Frequency response and Sharpness of Resonance (Q-Factor):
In most physics and engineering problems the
oscillators are analyzed in the limit of small m ?
amplitudes. In mechanics problems, an oscillating -\ KNOW.
spring or other structural element has some
nonlinearity in its stress-strain curve as the
driving force increases and reaches close to the . X . ;
increase in amplitude as heavy wind

elastic 11.m1t.. ) blowing across the bridge resonated with
An oscillating system does not like that an the natural frequency of oscillation of the

In 1940 Tacoma Narrows Bridge in
Washington USA was collapsed due to

external force resonates with its natural bridge. This decreases the damping and
frequency. If you do this the system responds and with the increasing amplitude enormous
sometimes its response is catastrophic, the amount of energy is stored in it which
collapse of Tacoma Narrows Bridge is a textbook causes the bridge to collapse.

example of this fact.

On the contrary, when the damping forces are
sufficiently strong to restrict the oscillation's
amplitude at resonance, the oscillator behaves
linearly. This behavior arises because, at
resonance, the energy supplied to the oscillator
from an external source precisely matches the
energy loss due to work done against the damping
forces. Increasing damping diminishes the
sharpness of resonance (Fig. 11.21), thereby
reducing its strength.

The sharpness of resonance depends mainly on
two factors: amplitude and damping. The Q-
factor quantifies the sharpness of resonance. It
signifies the reduction of the oscillation's
amplitude over time, which corresponds to the
decay of energy in an oscillating system. It is
approximately defined as the number of free
oscillations the oscillator undergoes before its
amplitude decays to zero. In the case of light
damping, the Q-factor will be large, whereas it
will be small for significant damping.
Mathematically, the Q-factor is the ratio of energy
stored to energy lost per oscillation, and it is a The newly built Tacoma Narrows bridges
dimensionless quantity. opened in 1950 (right) and 2007 (left).

Q =Esored/Eiost ... (11.33) These bridges are built w1th.much higher
resonant frequencies.
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An equilibrium point is stable if the net force on an object when it is displaced from
equilibrium position back towards equilibrium point.

Vibration occurs in the vicinity of a point of stable equilibrium.

A force which restores the equilibrium state of a system is called elastic restoring force.
Simple harmonic motion is periodic motion that occurs whenever the restoring force is
proportional to the displacement from equilibrium.

The acceleration is proportional to and in opposite direction of the displacement: ay(t) =
-0%x(t).

In SHM position, velocity and acceleration as a functions of time are sinusoidal (i.e. sine
or cosine function).

An oscillatory motion is approximately SHM if the amplitude is small.

The maximum velocity and acceleration in SHM are vin = ©Xoand am = ®*Xo.

The angular frequency for a mass-spring system is: @ = \/% ; where k is spring or force

constant.
The angular frequency for a simple pendulum is: ® = \/% ; where L is length of simple

pendulum.

In the absence of any resistive (dissipative) forces the total mechanical energy of a
simple harmonic oscillator at any point is constant and proportional to the square of the
amplitude: E = % kx2

Resistive forces take out energy from an oscillating system. This takeoff is called
Damping.

Damping causes the amplitude to decrease with time.

Resonance is a phenomenon exhibited by an oscillating system, when the system is
vibrating under an external driven force close to its natural frequency.

Q-Factor is the measurement of sharpness of resonance.
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D

s EXERCISE

Section (A): Multiple Choice Questions (MCQs)

1.

10.

Two simple pendulums A and B with same lengths, and equal amplitude of vibrations,
but the mass of A is twice the mass of B, their period are T 4 and Tg and energies are E
and Eg respectively. Choose the correct statement.

a) Ta=Ts and Eo > Ep b) Ta<Ts and Es > Ep
C) Ta>Tg and Ea <Eg d) Ta=Tg and Ex <Ep
In order to double the period of a simple pendulum:
a) Its length should be doubled b) Its length should be quadrupled
¢) The mass should be doubled d) The mass should be quadrupled
A simple harmonic oscillator has amplitude A and time period t. Its maximum speed is:
4A 2A 4TA 2TA
8 b © 9 =

A spring attached by a load of weight W is vibrating with a period T. If the spring is
divided in four equal parts and the same load is suspended from one of these parts, the

new time period is:
T T

a) " b) 2T c) 2 d) 4T

The total energy of a particle executing simple harmonic motion is proportional to:

a) frequency of oscillation b) maximum velocity of motion

c¢) amplitude of motion d) square of amplitude of motion

A child swinging on a swing in sitting position, stands up, then the time period of the
swing will:

a) Increase b) decrease ¢) remains the same

d) increases if the child is long and decreases if the child is short

If a body oscillates at the angular frequency ®q of the driving force, then the
oscillations are called:

a) Forced oscillations b) Coupled oscillations

c) Free oscillations d) Maintained oscillations

A simple harmonic oscillator with a natural frequency wn is force to oscillate with a
driving frequency w4 The Resonance occurred when:

a) on < o4 b) on >4 C) ON =g d) on =g
In vehicles, shock absorber reduced the jerks:

a) The shock absorber is the application of damped oscillations.

b) Damping effect is due to the fractional loss of energy

c¢) Shock absorbers in vehicles reduced jerk

d) All of these

A heavily damped system has a fairly flat resonance curve in:

a) An acceleration time graph b) An amplitude frequency graph
c) Velocity time graph d) Distance-time graph

—
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Section (B): Structured Questions

CRQs:
1.

2.

ERQs:

Explain the concept of periodic motion to oscillatory motion. Discuss the terms
period, frequency, and amplitude.

Explain the concept of phase and phase difference in oscillatory motion. Discuss how
phase is related to the position and time in an oscillating system.

Explain the concept of damping and its effects on oscillatory motion. Discuss the
types of damping, such as over-damping, under-damping, and critical-damping
Discuss the concept of resonance frequency and its relationship to the natural
frequency of an oscillating system.

Discuss the factors that affect the period of a simple pendulum. Explain how the
length of the pendulum, the acceleration due to gravity, mass and the amplitude of
oscillation influence the period.

Define simple harmonic motion (SHM). Discuss the key characteristics of a system
undergoing SHM.

Derive the equation of motion for a mass-spring system in SHM, illustrating each step
of the derivation.

Discuss the concept of energy in SHM. Explain how kinetic energy and potential
energy vary throughout the motion of a particle in SHM and how the total mechanical
energy is conserved.

Discuss the concept of resonance in simple harmonic motion. Explain how resonance
occurs and its effects on the amplitude and energy transfer in a driven oscillating
system.

Discuss the factors that affect the sharpness of resonance in an oscillatory system.
Explain how damping and quality factor influence the width and peak of the resonance
curve.

Explain how the period of a mass-spring system can be independent of amplitude,
even though the distance travelled during each cycle is proportional to amplitude.

A mass hanging vertically from a spring and a simple pendulum both have a period of
oscillation of 1s on Earth. The two devices are sent to another planet, where
gravitational field is stronger than that of Earth. For each of the two systems, state
whether the period is now longer than 1s, shorter than 1s, or equal to 1s. Explain your
reasoning.
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Numericals:

1. The period of oscillation of an object in an ideal spring and mass system is 0.50 s and
the amplitude is 5.0 cm. what is the speed at the equilibrium point? and the
acceleration at the point of maximum extension of the spring.  (62.8 cm/s 7.9 m/s%)

2. A sewing machine needle moves with a rapid vibratory motion, like SHM, as it sews a
seam. Suppose the needle moves 8.4 mm from its highest to its lowest position and it
makes 24 stitches in 9.0s. What is the maximum needle speed? (7.0 cm/s)

3. An ideal spring with a spring constant of 15 N/m is suspended vertically. A body of
mass 0.60 kg is attached to the upstretched spring and released.

(a) What is the extension of the spring when the speed is a maximum?
(b) What is the maximum speed? [(a) 0.39 m (b) 2.0 m/s]

4. A body is suspended vertically from an ideal spring of spring constant 2.5 N/m. the
spring is initially in its relaxed position. The body is then released and oscillates about
its equilibrium position. The motion is described by y= (4.0cm) sin[(0.70rad/s) t].
What is the maximum kinetic energy of the body? (2.0 mJ)

5. The period of oscillation of a simple pendulum does not depend on the mass of the
bob. By contrast the period of a mass-spring system does depend on mass. Explain the
apparent condition.

6. What is the period of a simple pendulum of a 6.0 kg mass oscillating on a 4.0 m long
string? (4.01s)

7. A pendulum of length 75 cm and mass 2.5 kg swings with a mechanical energy of
0.015 J. what is its amplitude? (3.0 cm)

8. A pendulum of length L, has a period of T; = 0.950 s. the length of the pendulum is
adjusted to a new value L, such that T, = 1.00 s what is the ratio Lo/L;  (1.11)

9. A wire is hanging from the top of a tower such that the top is not visible due to
darkness. How do you calculate the height of tower?

10. The amplitude of oscillation of a pendulum decays by a factor of 20.0 in 120 s. By
what factor has its energy decayed in that time

(The energy has decreased by a factor of 400)




